Enhancing the out-of-plane behaviour of unreinforced masonry walls under impact loading through the use of partially bonded layers of engineered cementitious composite

2019 ◽  
Vol 11 (2) ◽  
pp. 209-234
Author(s):  
Saeed Pourfalah ◽  
Demetrios M Cotsovos

Published experimental work reveals that the out-of-plane behaviour of unreinforced masonry walls under impact loading can be significantly enhanced through the use of engineered cementitious composite layers fully bonded to the surface of the masonry. The disadvantage of this method is associated with the localised cracking exhibited by the engineered cementitious composite layer close to the joints forming between bricks. This cracking is associated with the bond developing between the masonry and the engineered cementitious composite layer and does not allow the latter layer to achieve its full potential, thus resulting in its premature failure. In an attempt to address this problem, a series of drop-weight tests were carried on masonry prismatic specimens strengthened with a layer of engineered cementitious composite partially bonded to the surface of the masonry acting in tension. The latter prismatic specimens consist of a stack of bricks connected with mortar joints. The specimens are considered to provide a simplistic representation of a vertical strip of a masonry wall subjected to out-of-plane actions associated with impact or blast loading. Analysis of the test data reveals that under impact loading, the specimens retrofitted with partially bonded engineered cementitious composite layers can exhibit a more ductile performance compared to that exhibited by the same specimens when strengthened with fully bonded layers of engineered cementitious composite. This is attributed to the fact that along its unbonded length, the engineered cementitious composite layer is subjected to purely uniaxial tension (free from any interaction with the surface of the masonry), allowing for the development of multiple uniformly distributed fine cracks.

2013 ◽  
Vol 57 ◽  
pp. 1-11 ◽  
Author(s):  
Pawan Agnihotri ◽  
Vaibhav Singhal ◽  
Durgesh C. Rai

2019 ◽  
Vol 9 (5) ◽  
pp. 994 ◽  
Author(s):  
Moncef Nehdi ◽  
Mohamed Ali

An engineered cementitious composite, endowed with strain recovery and incorporating hybrid shape memory alloy (SMA) and polyvinyl alcohol (PVA) short fibers, was subjected to drop weight impact loading. Numerical simulation of the composite’s impact behavior was performed, and the model predictions agreed well with the experimental findings. Numerical and experimental investigations demonstrated that incorporating SMA fibers in the composite yielded superior impact resistance compared to that of control mono-PVA specimens. Heat treatment stimulated the SMA fibers to apply local prestress on the composite’s matrix owing to the shape memory effect, thus enhancing energy absorption capacity, despite the damage incurred by PVA fibers during the heating process. The superior impact performance of the hybrid composite makes it a strong contender for the construction of protective structures, with a potential to enhance the safety of critical infrastructure assets against impact and blast loading.


Structures ◽  
2018 ◽  
Vol 13 ◽  
pp. 88-101 ◽  
Author(s):  
H. Derakhshan ◽  
W. Lucas ◽  
P. Visintin ◽  
M.C. Griffith

Structures ◽  
2020 ◽  
Vol 28 ◽  
pp. 2431-2447
Author(s):  
Lang-Zi Chang ◽  
Francesco Messali ◽  
Rita Esposito

Sign in / Sign up

Export Citation Format

Share Document