drop weight
Recently Published Documents


TOTAL DOCUMENTS

538
(FIVE YEARS 128)

H-INDEX

32
(FIVE YEARS 7)

2022 ◽  
pp. 002199832110605
Author(s):  
Niels van Hoorn ◽  
Christos Kassapoglou ◽  
Sergio Turteltaub ◽  
Wouter van den Brink

Impact experiments of thick fabric carbon/epoxy laminate specimens, with small thickness ratio, are conducted at distinct energy levels and thicknesses to characterise the damage process. These specimens and loading conditions are representative of a new generation of critical structural components in aviation, such as wing spars, landing gear beams and fittings, that are increasingly being made entirely from composites. The tests address the need to better understand the damage process for specimens with a small thickness ratio since existing experimental impact data for large thickness ratio (thin laminates) may not be directly applicable. Two energy levels, two different fabric layups and two impact methods (drop-weight and gas-cannon) were used. Data from high-speed cameras were processed in a novel way, providing the force during impact. C-scans and micrographs were used to characterise damage. The results show that specimens with a thickness ratio of 5 (20 mm thick) experience more bending compared to specimens with a ratio 2.5 (40 mm thick). For gas-cannon impacts, this results in a higher delaminated area. The drop-weight impacts show almost no differences in damage size for the thickness range analysed. The influence of layup on the global impact response is negligible, but locally it can result in significant variations in dent depth. The dent depth scales linearly with the impact energy and the delaminated area linearly with the impact velocity. There is no clear correlation between the compression-after-impact failure mechanisms and the residual strength. Impact damage, at the current energy levels, showed a minimal reduction of residual strength.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7773
Author(s):  
Jae-Hoon Lee ◽  
Jin-Seok Choi ◽  
Tian-Feng Yuan ◽  
Young-Soo Yoon

Following the fourth Industrial Revolution, electronic and data-based technology is becoming increasingly developed. However, current research on enhancing electromagnetic interference (EMI) shielding and the physical protection performance of structures incorporating these technologies is insufficient. Therefore, in this study aiming for the improvement of EMI shielding and structural performance of structures, twelve concrete walls were fabricated and tested to determine their shielding effectiveness and drop-weight impact resistance. Concrete walls strengthened by three thickness types of high-strength, high-ductility concrete (HSDC) have been considered. The test results showed that the shielding effectiveness with strengthening thickness increased by approximately 35.6–46.2%. Specimens strengthened by more than 40% and 10% of the strengthening area ratio of single- and double-layer, respectively, exhibited more than 20 dB of shielding effectiveness. Moreover, the relationship between the damaged area ratio and shielding effectiveness was evaluated by means of the drop-weight impact test. The structural performance and EMI shielding effectiveness improved as the HSDC thickness increased.


2021 ◽  
pp. 002199832110587
Author(s):  
Sultan M Bayazeid ◽  
Kim-Leng Poon ◽  
Balakrishnan Subeshan ◽  
Mohammed Alamir ◽  
Eylem Asmatulu

Carbon fiber–reinforced composites (CFRCs) have been used extensively in structural applications within the aerospace and automotive manufacturing industries. However, several other applications have been recognized. These take advantage of the additional properties of CFRCs, which lead to providing better performance for structures. However, in their service environment, these CFRCs are inevitably susceptible to impact damage from multiple sources, and they must be able to recover from impacts to meet structural requirements. This study directs an experimental investigation of using induction heating (IH) for an impact-damaged CFRC. Here, IH process parameters, including the effects of electromagnetic frequency and generator power on the recovery of impact-damaged CFRC, have been analyzed. The anisotropic conductivity characteristics and the relationship between the drop-weight impact depth and conductivity of CFRC garnered much attention. This paper also offers the electromagnetic properties of CFRC for various applications. In this study, CFRC cured samples were obtained from Cetex® TC1200 PEEK, AS4 145 gsm, 16 unidirectional plies. Three variants of CFRC samples were tested: undamaged samples; samples with impact damage introduced in the center by a drop-weight impact test, according to the ASTM D7136/7136M standard; and samples with drop-weight impact damage recovered using the IH system. This work presents the results of the tensile strength of CFRC samples to assess the comparison of undamaged samples, samples damaged after the drop-weight impact test, and samples recovered after the drop-weight impact test. IH is appropriate for the recovery of impact-damaged CFRC samples, aiding in the conversion of electromagnetic energy to heat in order to generate mechanisms on components to recover the impact-damaged CFRC samples. Experimental results show that the impact-damaged area of the recovered CFRC samples is 37.0% less than that of damaged CFRC samples, and tensile strength results also improved after the impact-damaged CFRC samples were recovered. These results show that the IH method can effectively improve the impact damage performance of CFRC. The outcome of this study is promising for use in many applications, especially in the aerospace and automotive industries.


2021 ◽  
Vol 248 ◽  
pp. 113283
Author(s):  
Zhujie Zhao ◽  
Dian Li ◽  
Hailiang Hou ◽  
Menglei Yao ◽  
Ke Wuang

Structures ◽  
2021 ◽  
Vol 34 ◽  
pp. 2789-2800
Author(s):  
Tayseer Z. Batran ◽  
Mohamed K. Ismail ◽  
Assem A.A. Hassan

Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1262
Author(s):  
Finn Ouchterlony ◽  
José A. Sanchidrián ◽  
Ömürden Genç

The breakage index equation (BIE), or t10 model from drop weight testing (DWT) data for rocks and ores is used in the design of crushers and mills. Such models are becoming increasingly difficult to visualize as the number of variables increases. The so-called double fan BIE, combined with the Swebrec distribution’s accurate description of the sieving curves, is applied to the modelling of drop-weight test fragmentation. The key parameters are geometric properties visible in the fan plot; slopes of straight lines and their point of convergence. The ability of the double fan BIE to reproduce DWT data had been previously established for 8 rocks with 480 DWT data sets. Here the fidelity of the double fan BIE is further evaluated for 18 new materials, based on 281 data sets. The fidelity of the double fan BIE with three fan lines is on par with the fidelity of the current state-of-the-art models for the new materials. Besides the breakage index equation, the new double fan BIE’s t10 equation produces, without additional parameters or fitted constants, the general breakage surface equation tn for an arbitrary n value as a bonus. The specific sieving curve for any combination of particle size and impact energy is also contained in the same formula. The result is an accurate, compact and transparent model.


Author(s):  
Kengne Benjamin ◽  
Ndibi Mbozo’o Martin Paul ◽  
Samon Jean Bosco ◽  
Nzie Wolfgang ◽  
Tcheukam-Toko Dénis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document