scholarly journals Atypical clinical and laboratory features of fish-tank granuloma: A case report

2018 ◽  
Vol 6 ◽  
pp. 2050313X1880407 ◽  
Author(s):  
Michael Sander ◽  
Judith L Isaac-Renton ◽  
Megan A Sander

We report a case of cutaneous Mycobacterium marinum infection with the unusual reported features of pruritus and paresthesia. In addition, we report a lack of in-vivo response to antibiotics based on in-vitro susceptibility testing.

2009 ◽  
Vol 53 (8) ◽  
pp. 3337-3346 ◽  
Author(s):  
Kristy Dolan ◽  
Sara Montgomery ◽  
Bradley Buchheit ◽  
Louis DiDone ◽  
Melanie Wellington ◽  
...  

ABSTRACT Tamoxifen (TAM), an estrogen receptor antagonist used primarily to treat breast cancer, has well-recognized antifungal properties, but the activity of TAM has not been fully characterized using standardized (i.e., CLSI) in vitro susceptibility testing, nor has it been demonstrated in an in vivo model of fungal infection. In addition, its mechanism of action remains to be clearly defined at the molecular level. Here, we report that TAM displays in vitro activity (MIC, 8 to 64 μg/ml) against pathogenic yeasts (Candida albicans, other Candida spp., and Cryptococcus neoformans). In vivo, 200 mg/kg of body weight per day TAM reduced kidney fungal burden (−1.5 log10 CFU per g tissue; P = 0.008) in a murine model of disseminated candidiasis. TAM is a known inhibitor of mammalian calmodulin, and TAM-treated yeast show phenotypes consistent with decreased calmodulin function, including lysis, decreased new bud formation, disrupted actin polarization, and decreased germ tube formation. The overexpression of calmodulin suppresses TAM toxicity, hypofunctional calmodulin mutants are hypersensitive to TAM, and TAM interferes with the interaction between Myo2p and calmodulin, suggesting that TAM targets calmodulin as part of its mechanism of action. Taken together, these experiments indicate that the further study of compounds related to TAM as antifungal agents is warranted.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S664-S664
Author(s):  
Kamilia Abdelraouf ◽  
Sergio Reyes ◽  
David P Nicolau

Abstract Background Using murine models of thigh and lung infection, we previously reported the potent in vivo activity of carbapenem human-simulated regimens against metallo-β-lactamase-producing Enterobacterales despite the observed resistance in vitro (JAC 2020 Apr 1;75(4):997-1005, AAC 2014;58(3):1671-7). In the current study, we examined the in vivo activity of cefepime human-simulated regimen against metallo-β-lactamase-producing Enterobacterales in a murine thigh infection model. Methods A population of clinical (n=21) and isogenic engineered (n=5) metallo-β-lactamase-producing Enterobacterales isolates expressing VIM, IMP or NDM but not co-expressing ESBLs or serine carbapenemases were utilized. KPC-producing strains (n=3) were included as positive controls. MICs of cefepime, piperacillin-tazobactam and meropenem were determined using broth microdilution in conventional cation-adjusted Muller Hinton and EDTA-supplemented broth at EDTA concentration of 300 mg/L (zinc-limited). The in vivo efficacy of a cefepime human-simulated regimen (2 g q8h as 2 h infusion) was determined in the neutropenic murine thigh infection model against the test isolates. Efficacy was measured as the change in log10cfu/thigh at 24 h compared with 0 h controls. Results Metallo-β-lactamase-producing Enterobacterales were found to be cefepime, piperacillin-tazobactam and meropenem non-susceptible in conventional broth. Supplementation with EDTA resulted in multi-fold reduction in the MICs and restoration of susceptibility. In accordance with the MICs generated in the zinc-limited broth, the administration of cefepime human-simulated regimen was associated with substantial bacterial reductions among mice infected with the clinical as well as the isogenic engineered metallo-β-lactamase-producing isolates. As anticipated with serine-based resistance, absence of MIC reduction in zinc-limited broth and lack of in vivo activity against KPC-producers were observed. Conclusion For metallo-β-lactamase-producing Enterobacterales, in vitro susceptibility testing to β-lactams with conventional media such as cation-adjusted Muller Hinton broth, a zinc-rich testing medium, is flawed since it does not recapitulate the host environment in which zinc concentrations are low. Disclosures David P. Nicolau, PharmD, Cepheid (Other Financial or Material Support, Consultant, speaker bureau member or has received research support.)Merck & Co., Inc. (Consultant, Grant/Research Support, Speaker’s Bureau)Wockhardt (Grant/Research Support)


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S668-S668
Author(s):  
Kamilia Abdelraouf ◽  
David P Nicolau

Abstract Background We previously reported the potent in vivo activity of ceftazidime/avibactam human-simulated regimen (HSR) against MBL-EB despite the observed resistance in vitro and the lack of avibactam MBL-inhibitory activity (AAC 2014 Nov;58(11):7007-9). Similar to avibactam, relebactam (REL) is a diazabicyclooctane that inhibits serine β-lactamases belonging to Classes A - C but not MBLs. In the current study, we examined the in vivo activity of cefepime (FEP)/REL combination HSR against MBL-EB in a murine thigh infection model. Methods Six clinical MBL-EB isolates expressing VIM, IMP or NDM and co-expressing at least one β-lactamase of Classes A - C (KPC, CTX-M, TEM, SHV, ACT, CMY) were utilized. MICs of FEP and FEP/REL combination (at fixed REL concentration of 4 mg/L) were determined using broth microdilution. FEP HSR (2 g q12h as 0.5 h infusion) alone and in combination with REL HSR (250 mg q6h as 0.5 h infusion) were established in the infection model. Thighs of neutropenic ICR mice were inoculated with bacterial suspensions of 107 CFU/ml. Two hours later, mice were administered the FEP HSR or the FEP/REL HSR. Efficacy was measured as the change in log10CFU/thigh at 24 h compared with 0 h controls. Results All isolates were FEP resistant (MIC ≥ 32 mg/L). Addition of REL had no impact on the MIC of the isolates. In in vivo studies, the average bacterial burden at 0 h was 5.84 ± 0.41 log10CFU/thigh. In accordance with the in vitro susceptibility, administration of FEP HSR was associated with net bacterial growth among all isolates ranging from 0.46 ± 0.60 to 2.97 ± 0.53 log10CFU/thigh. In contrast, FEP/REL combination HSR resulted in substantial bacterial reductions among all isolates ranging from -0.73 ± 0.13 to -1.72 ± 0.14 log10CFU/thigh, indicating that REL enhanced the FEP activity in vivo. Conclusion Despite the powerful β-lactam hydrolytic capability of MBLs in vitro, FEP inactivation in the murine model was attributed predominantly to the expression of the serine β-lactamases. The in vitro/in vivo discordance in β-lactam/β-lactamase activity against MBL-EB reveals a potential flaw in the currently utilized in vitro susceptibility testing methodologies and highlights a challenge encountered during the development of new agents against these isolates. Disclosures David P. Nicolau, PharmD, Cepheid (Other Financial or Material Support, Consultant, speaker bureau member or has received research support.)Merck & Co., Inc. (Consultant, Grant/Research Support, Speaker’s Bureau)Wockhardt (Grant/Research Support)


1997 ◽  
Vol 41 (7) ◽  
pp. 1558-1561 ◽  
Author(s):  
J E Lutz ◽  
K V Clemons ◽  
B H Aristizabal ◽  
D A Stevens

SCH 56592 (SCH) is a new triazole antifungal with a broad spectrum of activity. In vitro susceptibility testing against five strains of Coccidioides immitis revealed MICs from 0.39 to 3.13 microg/ml and minimal fungicidal concentrations from 1.56 to 3.13 microg/ml. A murine model of systemic coccidioidomycosis was established in female CD-1 mice. Groups received either no treatment or oral therapy with fluconazole at 10 or 100 mg/kg of body weight; itraconazole at 10 or 100 mg/kg; SCH at 0.5, 2, 10, or 25 mg/kg; or its methylcellulose diluent alone. Therapy began 2 days postinfection and continued once daily for 19 days. Surviving mice were euthanized 49 days postinfection, and infectious burdens were determined by culture. All drugs were superior to no-treatment or diluent-treatment controls (P < 0.001) in prolonging survival but were not significantly different from one another. Itraconazole at 100 mg/kg was superior to fluconazole in reduction of CFU in the spleen, liver, and lung (P < 0.01 to 0.001). SCH at 0.5 mg/kg was superior to either fluconazole or itraconazole at 10 mg/kg in reduction of CFU in all three organs (P < 0.05 to 0.001). SCH at 2 mg/kg was not significantly different from itraconazole at 100 mg/kg in all three organs. SCH at 10 and 25 mg/kg was superior to either dose of fluconazole or itraconazole in all three organs (P < 0.05 to 0.001). In terms of reduction of CFU, SCH was > or = 200-fold as potent as fluconazole and > or = 50-fold as potent as itraconazole. There was a clear dose-responsive relationship for SCH in each of the organs. It is noteworthy that SCH effected cures (no detectable C. immitis in any organ) in 1 of 9, 6 of 10, or 9 of 9 surviving mice in animals given 2, 10, or 25 mg/kg, respectively. Neither fluconazole nor itraconazole cured any survivor. SCH has potent, fungicidal activity in vivo against C. immitis. It should be considered for clinical trials in patients with coccidioidomycosis.


2018 ◽  
Vol 5 (suppl_1) ◽  
pp. S71-S71 ◽  
Author(s):  
Sujata M Bhavnani ◽  
Nikolas J Onufrak ◽  
Jeffrey P Hammel ◽  
David R Andes ◽  
John S Bradley ◽  
...  

Abstract Background Resistance to AGs and numerous other classes continues to emerge. To ensure that susceptibility is accurately characterized and that clinicians have reliable data to select effective agents, appropriate in vitro susceptibility testing interpretive criteria (susceptible breakpoints [BKPTs]) are crucial to ensure optimal patient care. Recently, USCAST, the USA voice to EUCAST/EMA, evaluated the BKPTs for the 3 most commonly used AGs, gentamicin, tobramycin, and amikacin [Bhavnani et al., IDWeek 2016; P-1977]. As a result of consultation from interested parties, which included evaluating AG dosing regimens provided in the US-FDA product package inserts and simulated patients with varying creatinine clearance, these BKPTS were reassessed. Methods Data sources considered included longitudinal US reference MIC distributions using in vitro surveillance data collected over 18 years, QC performance (MIC, disk diffusion), population pharmacokinetics (PK), and in vivo PK-PD models. Using population PK models, PK-PD targets for efficacy and Monte Carlo simulation, percent probabilities of PK-PD target attainment by MIC after administration of traditional and extended interval AG dosing regimens were evaluated among simulated patients. Epidemiological cut-off and PK-PD BKPTs were considered when recommending BKPTs for AG–pathogen pairs. Results An example of PK-PD target attainment analysis output is provided in Figure 1 and a subset of recommended AG BKPTs for 3 pathogens is shown in Table 1. Updated USCAST BKPTs, which were based on the application of population PK and PK-PD models, simulation techniques, and contemporary MIC distribution statistics, are generally lower than those of EUCAST/EMA, USA-FDA, and CLSI. Adequate PK-PD target attainment was not achieved for some AG-pathogen pairs, even when high-dose AG dosing regimens and PK-PD targets for stasis were evaluated (e.g., gentamicin vs. P. aeruginosa; amikacin vs. S. aureus). Conclusion These revised AG BKPT recommendations, which will be made freely available to EUCAST, USA-FDA, and CLSI, will be finalized after considering comments from additional interested stakeholders. This process will be followed in an effort to bring harmonization to global BKPTs for AGs. Disclosures All authors: No reported disclosures.


Sign in / Sign up

Export Citation Format

Share Document