scholarly journals Three-Dimensional CT Evaluation of Tunnel Positioning in ACL Reconstruction Using the Single Anteromedial Bundle Biological Augmentation (SAMBBA) Technique

2017 ◽  
Vol 5 (5) ◽  
pp. 232596711770651 ◽  
Author(s):  
Florent Buscayret ◽  
Eduardo Frois Temponi ◽  
Adnan Saithna ◽  
Mathieu Thaunat ◽  
Bertrand Sonnery-Cottet

Background: Remnant preservation may confer important advantages in the anterior cruciate ligament (ACL)–reconstructed knee. However, the presence of a large remnant may obscure visualization and impair the ability to correctly place tunnels during surgery. Purpose: To determine whether tunnel placement during anatomic ACL reconstruction using the single anteromedial bundle biological augmentation (SAMBBA) technique is consistent and precise when a large native remnant is preserved. Study Design: Case series; Level of evidence, 4. Methods: Included in this study were 99 patients undergoing an ACL reconstruction during which at least 50% of the native ACL was preserved. The femoral tunnel was created using an outside-in specific guide. The tibial tunnel was positioned in the anteromedial region of the ACL footprint, and the remnant was carefully preserved while drilling and passing the semitendinosus graft through it. Postoperatively, 3-dimensional computed tomography (3D CT) was used to evaluate tunnel placement. The mean tunnel locations were calculated and the standard deviation was used to evaluate precision of positioning. Inter- and intrareader agreement were determined to assess reliability of evaluation of tunnel position. Results: The center of the femoral tunnel was positioned at a mean 19.4% (SD, 2%) of the depth of the notch and a mean 23.1% (SD, 3.5%) of the lateral wall height. The center of the tibial tunnel was positioned at a mean 36.3% (SD, 3.8%) of the anteroposterior length of the tibial plateau and at a mean 47.0% (SD, 2.7%) of the mediolateral width. The small standard deviations demonstrate that this technique allows precise tunnel placement. The tunnel positions achieved were consistent with previous anatomic studies of femoral and tibial anteromedial bundle insertion. Intra- and interobserver reliability were high. Conclusion: Three-dimensional CT evaluation demonstrated that despite the presence of a large remnant, placement of femoral and tibial tunnels for anatomic ACL reconstruction using the SAMBBA technique is consistent and precise.

2019 ◽  
Vol 7 (3_suppl) ◽  
pp. 2325967119S0004
Author(s):  
Brandon Tauberg ◽  
Ronen Sever ◽  
Regina Hanstein ◽  
Eric Fornari

Purpose: The aim of this study was to evaluate the influence of surgical experience of an orthopaedic surgeon on femoral and tibial tunnel placement during anterior cruciate ligament (ACL) reconstruction, and the effect of tunnel angle on patient self-report outcomes. Methods: We retrospectively reviewed 115 consecutive ACL reconstruction surgeries by a single fellowship-trained orthopaedic surgeon over his first 5 years in practice. 70 patients with hamstring (HS) and 44 patients with bone-patellar tendon-bone (BTB) autografts were included, all epiphyseal approaches, graft hybrids or allografts were excluded. Posterior distal femoral angle (PDFA), femoral and tibial tunnel angulation were measured on AP and lateral radiographs by 2 independent raters with high inter-rater reliability (ICC >0.8 for all measures). Tunnel angulation was compared to recently reported ideal femoral angle of 33.5°±1.8 or ideal tibial angle of 62.5°±5 (Luthringer et al, 2016). Complications and self-report outcomes - pediIKDC, Tegner-Lysholm and KOOSChild - were recorded, as well as demographics, injury and surgery characteristics (e.g. concurrent meniscal repairs, chondroplasty, tourniquet time). Average follow-up was 1.14 years. Continuous variables were analyzed using unpaired t-test, Wilcoxon rank sum test and Spearman correlation. Categorical variables were analyzed using Fisher’s exact test. Results: ACL reconstruction was performed at an average age of 16.7 years (range, 11.8 to 20.4 years), 59% males. Figure 1 shows tunnel angles over case groups of N=15. For HS autografts, femoral tunnel angle and tibial tunnel angle improved toward the ideal angle after 15 cases (ANOVA, p=0.020 and p=0.031, respectively). For BTB autografts, femoral tunnel angle and tibial tunnel angle did not demonstrate a significant change over cases (Figure 1). The tibial tunnel angle in HS cases showed a negative weak correlation with the selected outcome scores at 6 months and 1 year after ACL reconstruction, whereas the tibial tunnel angle in BTB cases showed a weak positive correlation with KOOSChild pain scores 6 months after initial surgery (Table 1). For either graft type, femoral tunnel angle was not correlated with any outcome measure. Overall, self-report outcome scores were similar between patients with ideal and non-ideal tunnel angles (data not shown). Of the 70 patients with HS autografts, 5 (7%) required a secondary surgery: 2 revisions for graft tear, 1 revision for a non-functional graft, 1 for arthrofibrosis and 1 for a prominent tibial screw. PDFA, femoral and tibial tunnel angle were similar between patients needing secondary surgery and those who did not (Table 2). Patients needing revision surgery had significantly lower Tegner-Lysholm and KOOSChild Pain scores at 6 months after the initial ACL reconstruction. Of the 44 BTB patients, 3 (6.8%) had complications: 2 patients developed arthrofibrosis and subsequently underwent surgery, and 1 patient experienced neuropathy. In these patients, the PDFA was significantly higher, the femoral tunnel angle significantly lower and tibial tunnel angle similar compared to those without a complication (Table 2). Demographic factors, injury and surgical parameters (concurrent meniscal repairs, chondroplasty, tourniquet time, aso) were similar between HS patients with or without additional surgery and between BTB patients with and without complications. Conclusion/Significance: Femoral and tibial tunnel angle improved towards the reported ideal angle after 15 cases for HS autografts. PDFA, femoral and tibial tunnel angle were not associated with surgical complications in HS patients. For BTB autografts, no significant changes were seen in tunnel placement with surgical experience. Patients experiencing complications after BTB autografts had a low femoral tunnel angle and high PDFA. Overall, tibial tunnel angle, but not femoral tunnel angle, correlated with outcome scores of patients with BTB and HS autografts. [Figure: see text][Table: see text][Table: see text]


2017 ◽  
Vol 5 (5) ◽  
pp. 232596711770415 ◽  
Author(s):  
John A. Tanksley ◽  
Brian C. Werner ◽  
Evan J. Conte ◽  
David P. Lustenberger ◽  
M. Tyrrell Burrus ◽  
...  

Background: Anatomic femoral tunnel placement for single-bundle anterior cruciate ligament (ACL) reconstruction is now well accepted. The ideal location for the tibial tunnel has not been studied extensively, although some biomechanical and clinical studies suggest that placement of the tibial tunnel in the anterior part of the ACL tibial attachment site may be desirable. However, the concern for intercondylar roof impingement has tempered enthusiasm for anterior tibial tunnel placement. Purpose: To compare the potential for intercondylar roof impingement of ACL grafts with anteriorly positioned tibial tunnels after either transtibial (TT) or independent femoral (IF) tunnel drilling. Study Design: Controlled laboratory study. Methods: Twelve fresh-frozen cadaver knees were randomized to either a TT or IF drilling technique. Tibial guide pins were drilled in the anterior third of the native ACL tibial attachment site after debridement. All efforts were made to drill the femoral tunnel anatomically in the center of the attachment site, and the surrogate ACL graft was visualized using 3-dimensional computed tomography. Reformatting was used to evaluate for roof impingement. Tunnel dimensions, knee flexion angles, and intra-articular sagittal graft angles were also measured. The Impingement Review Index (IRI) was used to evaluate for graft impingement. Results: Two grafts (2/6, 33.3%) in the TT group impinged upon the intercondylar roof and demonstrated angular deformity (IRI type 1). No grafts in the IF group impinged, although 2 of 6 (66.7%) IF grafts touched the roof without deformation (IRI type 2). The presence or absence of impingement was not statistically significant. The mean sagittal tibial tunnel guide pin position prior to drilling was 27.6% of the sagittal diameter of the tibia (range, 22%-33.9%). However, computed tomography performed postdrilling detected substantial posterior enlargement in 2 TT specimens. A significant difference in the sagittal graft angle was noted between the 2 groups. TT grafts were more vertical, leading to angular convergence with the roof, whereas IF grafts were more horizontal and universally diverged from the roof. Conclusion: The IF technique had no specimens with roof impingement despite an anterior tibial tunnel position, likely due to a more horizontal graft trajectory and anatomic placement of the ACL femoral tunnel. Roof impingement remains a concern after TT ACL reconstruction in the setting of anterior tibial tunnel placement, although statistical significance was not found. Future clinical studies are planned to develop better recommendations for ACL tibial tunnel placement. Clinical Relevance: Graft impingement due to excessively anterior tibial tunnel placement using a TT drilling technique has been previously demonstrated; however, this may not be a concern when using an IF tunnel drilling technique. There may also be biomechanical advantages to a more anterior tibial tunnel in IF tunnel ACL reconstruction.


2014 ◽  
Vol 28 (S1) ◽  
Author(s):  
Melissa Ducsharm ◽  
Daniel Banaszek ◽  
Daniel Hesse ◽  
Manuela Kunz ◽  
Conrad Reifel ◽  
...  

2019 ◽  
Vol 47 (13) ◽  
pp. 3187-3194 ◽  
Author(s):  
Christopher Pedneault ◽  
Carl Laverdière ◽  
Adam Hart ◽  
Mathieu Boily ◽  
Mark Burman ◽  
...  

Background: Anatomic anterior cruciate ligament (ACL) reconstruction improves knee kinematics and joint stability in symptomatic patients who have ACL deficiency. Despite a concerted effort to place the graft within the ACL’s native attachment sites, the accuracy of tunnel placement using contemporary techniques is not well established. Purpose: To use 3-dimensional magnetic resonance imaging (3D MRI) to prospectively evaluate the accuracy of tibial tunnel placement after anatomic ACL reconstruction. Study Design: Case series; Level of evidence, 4. Methods: Forty patients with symptomatic, ACL-deficient knees were prospectively enrolled in the study and underwent 3D MRI of both their injured and uninjured knees before and after surgery through use of a validated imaging protocol. The root ligament of the anterior horn of the lateral meniscus was used as a radiographic reference, and the center of the reconstructed graft was compared with that of the contralateral normal knee. The tunnel angles and intra-articular graft angles were also measured, as was the percentage overlap between the native tibial footprint and tibial tunnel. Results: The reconstructed tibial footprint was placed at a mean ± SD of 2.14 ± 2.45 mm ( P < .001) medial and 5.11 ± 3.57 mm ( P < .001) posterior to the native ACL footprint. The mean distance between the center of the native and reconstructed ACL at the tibial attachment site was 6.24 mm. Of the 40 patients, 18 patients had a tibial tunnel that overlapped more than 50% of the native footprint, and 10 patients had maximal (100%) overlap. Further, 22 of the 40 patients had less than 50% overlap with the native footprint, and in 12 patients the footprint was missing completely. Conclusion: Despite the use of contemporary surgical techniques to perform anatomic ACL reconstruction, a significant positioning error in tibial tunnel placement remains.


2014 ◽  
Vol 24 (1) ◽  
pp. 51-57 ◽  
Author(s):  
Sanjeev Bhatia ◽  
Kyle Korth ◽  
Geoffrey S. Van Thiel ◽  
Rachel M. Frank ◽  
Deepti Gupta ◽  
...  

Author(s):  
Vinay Tantuway ◽  
S. A. Mustafa Johar ◽  
Viral Patel ◽  
Ashok Nagla ◽  
Rishi Gupta ◽  
...  

<p class="abstract"><strong>Background:</strong> <span>Accurate placement of the femoral tunnel is critical for long-term clinical success following anterior cruciate ligament (ACL) reconstruction.</span> <span> Current trends in ACL reconstruction favor anatomic positioning of ACL attachment sites. Surgical inaccuracy in femoral tunnel positioning can lead to potential early graft failure and early-onset osteoarthritis. The purpose of this study was to evaluate</span> the functional outcome in patients who underwent arthroscopic anatomic ACL reconstruction using hamstring tendon graft<span lang="EN-IN">.</span></p><p class="abstract"><strong>Methods:</strong> The<strong> </strong>study was conducted in the Orthopedics Department of IIMCHRC, Indore the placement of femoral tunnel, using femoral off set guide with other techniques. All the patients who were diagnosed clinically and radiologically with ACL tear and all who gave the consent were included in the study. All patients were enrolled to undergo primary arthroscopically assisted ACL reconstruction.<strong></strong></p><p class="abstract"><strong>Results:</strong> In the present study out of 42 patients; 23 patients (55%) had right sided ACL injury and remaining 19 patients (45%) had left sided ACL injury. We assessed functional outcome of the patients through pre-operative and post-operative IKDC scoring. The mean of the pre-op IKDC scoring was 33.61 with SD of 9.67 and the mean of the post-operative IKDC scoring was 77.95 with SD of 15.15<span lang="EN-IN">. </span></p><p class="abstract"><strong>Conclusions:</strong> The commercially available off set guide technique of the femoral tunnel placement in arthroscopic ACL reconstruction is easy, reliable and reproducible with the foot print at anatomical place on the femoral site<span lang="EN-IN">.</span></p>


Author(s):  
Tsuneari Takahashi ◽  
Tomohiro Saito ◽  
Tatsuya Kubo ◽  
Ko Hirata ◽  
Hideaki Sawamura ◽  
...  

AbstractFew studies have determined whether a femoral bone tunnel could be created behind the resident's ridge by using a transtibial (TT) technique-single bundle (SB)-anterior cruciate ligament (ACL) reconstruction. The aim of this study was to clarify (1) whether it is possible to create a femoral bone tunnel behind the resident's ridge by using the TT technique with SB ACL reconstruction, (2) to define the mean tibial and femoral tunnel angles during anatomic SB ACL reconstruction, and (3) to clarify the tibial tunnel inlet location when the femoral tunnel is created behind resident's ridge. Arthroscopic TT-SB ACL reconstruction was performed on 36 patients with ACL injuries. The point where 2.4-mm guide pin was inserted was confirmed, via anteromedial portal, to consider a location behind the resident's ridge. Then, an 8-mm diameter femoral tunnel with a 4.5-mm socket was created. Tunnel positions were evaluated by using three-dimensional computed tomography (3D-CT) 1 week postoperatively. Quadrant method and the resident's ridge on 3D-CT were evaluated to determine whether femoral tunnel position was anatomical. Radiological evaluations of tunnel positions yielded mean ( ±  standard deviation) X- and Y-axis values for the tunnel centers: femoral tunnel, 25.2% ± 5.1% and 41.6% ± 10.2%; tibial tunnel, 49.2% ± 3.5%, and 31.5% ± 7.7%. The bone tunnels were anatomically positioned in all cases. The femoral tunnel angle relative to femoral axis was 29.4 ± 5.5 degrees in the coronal view and 43.5 ± 8.0 degrees in the sagittal view. The tibial tunnel angle relative to tibial axis was 25.5 ± 5.3 degrees in the coronal view and 52.3 ± 4.6 degrees in the sagittal view. The created tibial bone tunnel inlet had an average distance of 13.4 ± 2.7 mm from the medial tibial joint line and 9.7 ± 1.7 mm medial from the axis of the tibia. Femoral bone tunnel could be created behind the resident's ridge with TT-SB ACL reconstruction. The tibial bone tunnel inlet averaged 13.4 mm from the medial tibial joint line and 9.7 mm medial from the tibia axis.


2014 ◽  
Vol 2 (11_suppl3) ◽  
pp. 2325967114S0012
Author(s):  
Cem Coşkun Avcı ◽  
Hüseyin Koca ◽  
Necdet Sağlam ◽  
Tuhan Kurtulmuş ◽  
Gürsel Saka

Objectives: Recent studies have demonstrated that ACL reconstruction via anatomic tunnel placement would provide superior stability. In order to achieve an anatomic femoral tunnel, accessory anteromedial portal (three-portal tecnique) and medial Hoffa excision is necessary. Femoral tunnel drilling through a far anteromedial portal facilitates anatomic tunnel placement but can also results in shorter femoral tunnel and articular cartilage damage of the medial femoral condyle. Our purpose in this study was to evaluate whether an anatomic single bundle ACL reconstruction can be performed with the use of the two standart portals (anteromedial and anterolateral). Methods: Fifty seven patient underwent single bundle ACL reconstruction in our clinic between 2012-2014, with the use of either standart portals or three-portal tecnique. We measured the tunnel length and and femoral tunnel angle in coronal plane to assess the reconstruction. Two portals group included thirty -three patients (twenty-nine males, four females with a mean age of 27±2,4) and three portals group included twenty–four patients (twenty-three males, one female with a mean age of 26±2,9). All patients were evaluated with computerized tomography (CT) scans to determine femoral tunnel length and obliquity. Tunnel length was defined as the distance between the intra-articular and extra-articular tunnel apertures in coronal sections. Femoral tunnel angle was measured in the coronal plane on AP radiographs of the knee. For statistical analysis, student t test was used for normal categorical data. A p value of <0.05 was considered significant. Results: Average tunnel length was 44.2 ±6.8 mm (range: 32.6-55.2) in two portals group and 32.8±7.9 mm (range: 24.8-43.2) in three portal group. The average tunnel length in three portal group was significantly smaller (p<0.05). According to radiographic measurement on the AP view, femoral tunnel angle averaged 48.20±7.10 (range:38.60-56.10) in two portals group and 47.20±6,30 (range: 39.40-55.20) in three portals group. This difference was not statistically significant (p=0.2). Conclusion: Femoral tunnels drilled with standart two-portal tecnique were longer than three-portal tecnique. However, femoral tunnel angles was not different in two groups. Tunnel characteristic in terms of anatomic position was obtained with standart two-portal tecnique. Consequently, femoral tunnels can be placed anatomically with standart portals.


Sign in / Sign up

Export Citation Format

Share Document