scholarly journals Differential effects of protease digestion on photoreceptor lectin binding sites.

1985 ◽  
Vol 33 (7) ◽  
pp. 642-646 ◽  
Author(s):  
J G Wood ◽  
L Napier-Marshall

The use of lectin cytochemistry together with proteolytic digestion techniques to partially characterize lectin binding sites of several intracellular compartments in frog photoreceptors was studied. Uniform access of reagents to all intracellular compartments was obtained by performing the experiments directly on semithin sections of retinal tissue embedded in a hydrophilic plastic resin. Protease pretreatment of sections of Xenopus laevis eyecup leads to a loss of wheat germ agglutinin (WGA) binding sites from most of the rod outer segment. Under experimental conditions used here, cone outer segment WGA binding sites are resistant to proteolytic digestion. Another major difference between rod and cone under segments is that rod outer segments are heavily labeled with succinylated WGA, whereas cone outer segments are barely labeled except for a region of intense staining thought to be at the connecting cilium. WGA binding sites in the shed outer segment tip (phagosome) are also relatively resistant to proteolytic digestion, as is the tip region of a few rod outer segments. This difference in lectin binding properties between the bulk of the outer segment membrane and the shed outer segment membrane is the only distinction we have observed between the two compartments in terms of their glycoconjugates. These results may be useful in terms of designing experiments to isolate cone and rod outer segments separately. They indicate that a change in outer segment glycoconjugates may accompany the shedding and phagocytosis events, as previously suggested, but this change does not necessarily involve the addition of saccharides to outer segment glycoproteins.

1989 ◽  
Vol 259 (1) ◽  
pp. 13-19 ◽  
Author(s):  
M M Whalen ◽  
M W Bitensky

The rod outer segments of the bovine and frog retina possess a cyclic GMP phosphodiesterase (PDE) that is composed of two larger subunits, alpha and beta (P alpha beta), which contain the catalytic activity and a smaller gamma (P gamma) subunit which inhibits the catalytic activity. We studied the binding of P gamma to P alpha beta in both the bovine and frog rod outer segment membranes. Analysis of these data indicates that there are two classes of P gamma binding sites per P alpha beta in both species. The activation of PDE by the guanosine 5′-[gamma-thio]triphosphate form of the alpha subunit of transducin, T alpha.GTP gamma S, was also studied. These data indicate that the two classes of P gamma binding sites contribute to the formation of two classes of binding sites for T alpha.GTP gamma S. We demonstrate solubilization of a portion of the P gamma by T alpha.GTP gamma S in both species. There is also present, in both species, a second class of P gamma which is not solubilized even when it is dissociated from its inhibitory site on P alpha beta by T alpha.GTP gamma S. The amount of full PDE activity which results from release of the solubilizable P gamma is about 50% in the frog PDE but only approx. 17% in the bovine PDE. We also show that activation of frog rod outer segment PDE by trypsin treatment releases the PDE from the membranes. This type of release by trypsin has already been demonstrated in bovine rod outer segments [Wensel & Stryer (1986) Proteins: Struct. Funct. Genet. 1, 90-99].


1989 ◽  
Vol 27 ◽  
pp. 82
Author(s):  
M. Narita ◽  
K. Yamashita ◽  
M. Yasuda

1988 ◽  
Vol 89 (2) ◽  
pp. 177-184 ◽  
Author(s):  
A. Velasco ◽  
J. Hidalgo ◽  
M. M�ller ◽  
G. Garcia-Herdugo

1984 ◽  
Vol 80 (6) ◽  
pp. 527-533 ◽  
Author(s):  
T. -C. Wu ◽  
M. -C. Lee ◽  
Y. -J. Wan ◽  
I. Damjanov

1989 ◽  
Vol 21 (11) ◽  
pp. 651-658 ◽  
Author(s):  
Ch. Hauke ◽  
R. Horn ◽  
W. Breuer ◽  
F. Sinowatz

Sign in / Sign up

Export Citation Format

Share Document