The use of intra-operative electrical auditory brainstem responses to predict the speech perception outcome after cochlear implantation

2009 ◽  
Vol 10 (sup1) ◽  
pp. 53-57 ◽  
Author(s):  
William PR Gibson ◽  
Halit Sanli ◽  
Colleen Psarros
2019 ◽  
Vol 23 ◽  
pp. 233121651987730 ◽  
Author(s):  
Garreth Prendergast ◽  
Samuel Couth ◽  
Rebecca E. Millman ◽  
Hannah Guest ◽  
Karolina Kluk ◽  
...  

Although there is strong histological evidence for age-related synaptopathy in humans, evidence for the existence of noise-induced cochlear synaptopathy in humans is inconclusive. Here, we sought to evaluate the relative contributions of age and noise exposure to cochlear synaptopathy using a series of electrophysiological and behavioral measures. We extended an existing cohort by including 33 adults in the age range 37 to 60, resulting in a total of 156 participants, with the additional older participants resulting in a weakening of the correlation between lifetime noise exposure and age. We used six independent regression models (corrected for multiple comparisons), in which age, lifetime noise exposure, and high-frequency audiometric thresholds were used to predict measures of synaptopathy, with a focus on differential measures. The models for auditory brainstem responses, envelope-following responses, interaural phase discrimination, and the co-ordinate response measure of speech perception were not statistically significant. However, both age and noise exposure were significant predictors of performance on the digit triplet test of speech perception in noise, with greater noise exposure (unexpectedly) predicting better performance in the 80 dB sound pressure level (SPL) condition and greater age predicting better performance in the 40 dB SPL condition. Amplitude modulation detection thresholds were also significantly predicted by age, with older listeners performing better than younger listeners at 80 dB SPL. Overall, the results are inconsistent with the predicted effects of synaptopathy.


2016 ◽  
Vol 130 (S3) ◽  
pp. S7-S7
Author(s):  
Karin Lundin ◽  
Fredrik Stillesjö ◽  
Helge Rask-Andersen

2018 ◽  
Vol 4 (1) ◽  
pp. 563-565 ◽  
Author(s):  
Daniel Polterauer ◽  
Maike Neuling ◽  
Joachim Müller ◽  
John-Martin Hempel ◽  
Giacomo Mandruzzato ◽  
...  

AbstractPrior to cochlear implantation, audiological tests are performed to determine candidacy in subjects with a hearing loss. This is usually done by measuring the acoustic auditory brainstem response (ABR). Unfortunately, for some subjects, a reproducible ABR recording cannot be obtained, even at high acoustic levels. Having a healthy stimulating auditory nerve is required for cochlear implantation in order to benefit from the electrical pulses that are generated by the implant and to improve speech comprehension. In some subjects, this prerequisite cannot be measured using routine audiological tests. In this study, the feasibility of recording electrically evoked auditory brainstem responses (eABR) using a stimulating transtympanic electrode, placed on the round window niche, together with MED-EL clinical system is investigated. The results show that it is possible to record reproducible eABR measurements using PromBERA. The response was also confirmed with intraoperative eABR measurements that were stimulated using the implanted CI electrode array. Similarities between the intraoperative measurements and the preoperative recorded waveforms were observed. In summary, the integrity and excitability of the auditory nerve can be objectively measured using the PromBERA in subjects where standard clinical testing procedures are unable to provide the information required.


2016 ◽  
Vol 131 (3) ◽  
pp. 239-244 ◽  
Author(s):  
M S Ansari ◽  
R Rangasayee ◽  
M A H Ansari

AbstractObjective:Poor auditory speech perception in geriatrics is attributable to neural de-synchronisation due to structural and degenerative changes of ageing auditory pathways. The speech-evoked auditory brainstem response may be useful for detecting alterations that cause loss of speech discrimination. Therefore, this study aimed to compare the speech-evoked auditory brainstem response in adult and geriatric populations with normal hearing.Methods:The auditory brainstem responses to click sounds and to a 40 ms speech sound (the Hindi phoneme |da|) were compared in 25 young adults and 25 geriatric people with normal hearing. The latencies and amplitudes of transient peaks representing neural responses to the onset, offset and sustained portions of the speech stimulus in quiet and noisy conditions were recorded.Results:The older group had significantly smaller amplitudes and longer latencies for the onset and offset responses to |da| in noisy conditions. Stimulus-to-response times were longer and the spectral amplitude of the sustained portion of the stimulus was reduced. The overall stimulus level caused significant shifts in latency across the entire speech-evoked auditory brainstem response in the older group.Conclusion:The reduction in neural speech processing in older adults suggests diminished subcortical responsiveness to acoustically dynamic spectral cues. However, further investigations are needed to encode temporal cues at the brainstem level and determine their relationship to speech perception for developing a routine tool for clinical decision-making.


Author(s):  
S N Dutt ◽  
A Kumar ◽  
A A Mittal ◽  
S Vadlamani ◽  
S K Gaur

Abstract Objective To evaluate the utility of pre-operative transtympanic electrically evoked auditory brainstem responses and post-operative neural response telemetry in auditory neuropathy spectrum disorder patients. Methods Four auditory neuropathy spectrum disorder patients who had undergone cochlear implantation and used it for more than one year were studied. All four patients underwent pre-operative transtympanic electrically evoked auditory brainstem response testing, intra-operative and post-operative (at 3, 6 and 12 months after switch-on) neural response telemetry, and out-patient cochlear implant electrically evoked auditory brainstem response testing (at 12 months). Results Patients with better waveforms on transtympanic electrically evoked auditory brainstem response testing showed superior performance after one year of implant use. Neural response telemetry and electrically evoked auditory brainstem response measures improved in all patients. Conclusion Inferences related to cochlear implantation outcomes can be based on the waveform of transtympanic electrically evoked auditory brainstem responses. Robust transtympanic electrically evoked auditory brainstem responses suggest better performance. Improvements in electrically evoked auditory brainstem responses and neural response telemetry over time indicate that electrical stimulation is favourable in auditory neuropathy spectrum disorder patients. These measures provide an objective way to monitor changes and progress in auditory pathways following cochlear implantation.


Sign in / Sign up

Export Citation Format

Share Document