auditory brainstem responses
Recently Published Documents


TOTAL DOCUMENTS

830
(FIVE YEARS 154)

H-INDEX

43
(FIVE YEARS 4)

Author(s):  
Lenneke Kiefer ◽  
Lisa Koch ◽  
Melisa Merdan-Desik ◽  
Bernhard H. Gaese ◽  
Manuela Nowotny

Noise-induced hearing deficits are important health problems in the industrialized world. As the underlying physiological dysfunctions are not well understood, research in suitable animal models is urgently needed. Three rodent species (Mongolian gerbil, rat and mouse) were studied to compare the temporal dynamics of noise-induced hearing loss after identical procedures of noise exposure. Auditory brainstem responses (ABRs) were measured before, during and up to eight weeks after noise exposure for threshold determination and ABR waveform analysis. Trauma induction with stepwise increasing sound pressure level was interrupted by five interspersed ABR measurements. Comparing short- and long-term dynamics underlying the following noise-induced hearing loss revealed diverging time courses between the three species. Hearing loss occurred early on during noise exposure in all three rodent species at or above trauma frequency. Initial noise level (105 dB SPL) was most effective in rats while the delayed level-increase to 115 dB SPL affected mice much stronger. Induced temporary threshold shifts in rats and mice were larger in animals with lower pre-trauma ABR thresholds. The increase in activity (gain) along the auditory pathway was derived by comparing the amplitudes of short- and long-latency ABR waveform components. Directly after trauma, significant effects were found for rats (decreasing gain) and mice (increasing gain) while gerbils revealed high individual variability in gain changes. Taken together, our comparative study revealed pronounced species-specific differences in the development of noise-induced hearing loss and the related processing along the auditory pathway.


2022 ◽  
pp. 100046
Author(s):  
Peter E. Clayson ◽  
Yash B. Joshi ◽  
Michael L. Thomas ◽  
Joyce Sprock ◽  
John Nungaray ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Florine L. Bachmann ◽  
Ewen N. MacDonald ◽  
Jens Hjortkjær

Linearized encoding models are increasingly employed to model cortical responses to running speech. Recent extensions to subcortical responses suggest clinical perspectives, potentially complementing auditory brainstem responses (ABRs) or frequency-following responses (FFRs) that are current clinical standards. However, while it is well-known that the auditory brainstem responds both to transient amplitude variations and the stimulus periodicity that gives rise to pitch, these features co-vary in running speech. Here, we discuss challenges in disentangling the features that drive the subcortical response to running speech. Cortical and subcortical electroencephalographic (EEG) responses to running speech from 19 normal-hearing listeners (12 female) were analyzed. Using forward regression models, we confirm that responses to the rectified broadband speech signal yield temporal response functions consistent with wave V of the ABR, as shown in previous work. Peak latency and amplitude of the speech-evoked brainstem response were correlated with standard click-evoked ABRs recorded at the vertex electrode (Cz). Similar responses could be obtained using the fundamental frequency (F0) of the speech signal as model predictor. However, simulations indicated that dissociating responses to temporal fine structure at the F0 from broadband amplitude variations is not possible given the high co-variance of the features and the poor signal-to-noise ratio (SNR) of subcortical EEG responses. In cortex, both simulations and data replicated previous findings indicating that envelope tracking on frontal electrodes can be dissociated from responses to slow variations in F0 (relative pitch). Yet, no association between subcortical F0-tracking and cortical responses to relative pitch could be detected. These results indicate that while subcortical speech responses are comparable to click-evoked ABRs, dissociating pitch-related processing in the auditory brainstem may be challenging with natural speech stimuli.


2021 ◽  
Vol 11 (12) ◽  
pp. 1596
Author(s):  
Ewa Domarecka ◽  
Mahmut Tayyar Kalcioglu ◽  
Ahmet Mutlu ◽  
Abdulkadir Özgür ◽  
Jasper Smit ◽  
...  

Research in hearing science is accelerating, and a wealth of data concerning auditory brainstem responses (ABR) in various animal models is published in peer-reviewed journals every year. Recently, we reviewed studies using ABR measurements in tinnitus rat models. We found significant discrepancies in the outcomes of these studies, some due to different research approaches and others due to different methodologies. Thus, the present work aimed to collect comprehensive information on all factors influencing ABR recordings in rats and compile recommendations on ABR data reporting. A questionnaire with queries about animal husbandry, transfer, handling, and the exact test conditions before, during, and after ABR recordings was sent to 125 researchers who published the relevant studies between 2015 and 2021. Eighteen researchers provided detailed answers on factors related to ABR measurements. Based on the analysis of the returned questionnaires, we identified three domains reflecting animal-, equipment-, and experiment-dependent factors that might influence the ABR outcome, thus requiring reporting in published research. The analysis of survey results led to the compilation of recommendations for reporting ABR outcomes supported by a literature review. Following these recommendations should facilitate comparative and meta-analyses of ABR results provided by various research groups.


2021 ◽  
Vol 11 (4) ◽  
pp. 639-652
Author(s):  
Rosamaria Santarelli ◽  
Pietro Scimemi ◽  
Chiara La Morgia ◽  
Elona Cama ◽  
Ignacio del Castillo ◽  
...  

Auditory Neuropathy (AN) is a hearing disorder characterized by disruption of temporal coding of acoustic signals in auditory nerve fibers resulting in the impairment of auditory perceptions that rely on temporal cues. Mutations in several nuclear and mitochondrial genes have been associated to the most well-known forms of AN. Underlying mechanisms include both pre-synaptic and post-synaptic disorders affecting inner hair cell (IHC) depolarization, neurotransmitter release from ribbon synapses, spike initiation in auditory nerve terminals, loss of nerve fibers and impaired conduction, all occurring in the presence of normal physiological measures of outer hair cell (OHC) activities (otoacoustic emissions [OAEs] and cochlear microphonic [CM]). Disordered synchrony of auditory nerve activity has been suggested as the basis of both the profound alterations of auditory brainstem responses (ABRs) and impairment of speech perception. We will review how electrocochleography (ECochG) recordings provide detailed information to help objectively define the sites of auditory neural dysfunction and their effect on inner hair cell receptor summating potential (SP) and compound action potential (CAP), the latter reflecting disorders of ribbon synapses and auditory nerve fibers.


Author(s):  
L. Koch ◽  
B. H. Gaese ◽  
Manuela Nowotny

AbstractExperiments in rodent animal models help to reveal the characteristics and underlying mechanisms of pathologies related to hearing loss such as tinnitus or hyperacusis. However, a reliable understanding is still lacking. Here, four different rat strains (Sprague Dawley, Wistar, Long Evans, and Lister Hooded) underwent comparative analysis of electrophysiological (auditory brainstem responses, ABRs) and behavioral measures after noise trauma induction to differentiate between strain-dependent trauma effects and more consistent changes across strains, such as frequency dependence or systematic temporal changes. Several hearing- and trauma-related characteristics were clearly strain-dependent. Lister Hooded rats had especially high hearing thresholds and were unable to detect a silent gap in continuous background noise but displayed the highest startle amplitudes. After noise exposure, ABR thresholds revealed a strain-dependent pattern of recovery. ABR waveforms varied in detail among rat strains, and the difference was most prominent at later peaks arising approximately 3.7 ms after stimulus onset. However, changes in ABR waveforms after trauma were small compared to consistent strain-dependent differences between individual waveform components. At the behavioral level, startle-based gap-prepulse inhibition (gap-PPI) was used to evaluate the occurrence and characteristics of tinnitus after noise exposure. A loss of gap-PPI was found in 33% of Wistar, 50% of Sprague Dawley, and 75% of Long Evans rats. Across strains, the most consistent characteristic was a frequency-specific pattern of the loss of gap-PPI, with the highest rates at approximately one octave above trauma. An additional range exhibiting loss of gap-PPI directly below trauma frequency was revealed in Sprague Dawley and Long Evans rats. Further research should focus on these frequency ranges when investigating the underlying mechanisms of tinnitus induction.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260090
Author(s):  
Emanuele Perugia ◽  
Ghada BinKhamis ◽  
Josef Schlittenlacher ◽  
Karolina Kluk

Current clinical strategies to assess benefits from hearing aids (HAs) are based on self-reported questionnaires and speech-in-noise (SIN) tests; which require behavioural cooperation. Instead, objective measures based on Auditory Brainstem Responses (ABRs) to speech stimuli would not require the individuals’ cooperation. Here, we re-analysed an existing dataset to predict behavioural measures with speech-ABRs using regression trees. Ninety-two HA users completed a self-reported questionnaire (SSQ-Speech) and performed two aided SIN tests: sentences in noise (BKB-SIN) and vowel-consonant-vowels (VCV) in noise. Speech-ABRs were evoked by a 40 ms [da] and recorded in 2x2 conditions: aided vs. unaided and quiet vs. background noise. For each recording condition, two sets of features were extracted: 1) amplitudes and latencies of speech-ABR peaks, 2) amplitudes and latencies of speech-ABR F0 encoding. Two regression trees were fitted for each of the three behavioural measures with either feature set and age, digit-span forward and backward, and pure tone average (PTA) as possible predictors. The PTA was the only predictor in the SSQ-Speech trees. In the BKB-SIN trees, performance was predicted by the aided latency of peak F in quiet for participants with PTAs between 43 and 61 dB HL. In the VCV trees, performance was predicted by the aided F0 encoding latency and the aided amplitude of peak VA in quiet for participants with PTAs ≤ 47 dB HL. These findings indicate that PTA was more informative than any speech-ABR measure, as these were relevant only for a subset of the participants. Therefore, speech-ABRs evoked by a 40 ms [da] are not a clinical predictor of behavioural measures in HA users.


Author(s):  
Johannes Wetekam ◽  
Julio Hechavarría ◽  
Luciana López‐Jury ◽  
Manfred Kössl

2021 ◽  
Author(s):  
Jennie M.E. Cederholm ◽  
Kristina E. Parley ◽  
Chamini J. Perera ◽  
Georg von Jonquieres ◽  
Jeremy L. Pinyon ◽  
...  

The medial olivocochlear (MOC) efferent feedback circuit projecting to the cochlear outer hair cells (OHCs) confers protection from noise-induced hearing loss and is generally thought to be driven by inner hair cell (IHC) - type I spiral ganglion afferent (SGN) input. Knockout of the Prph gene (PrphKO) encoding the peripherin type III intermediate filament disrupted the OHC - type II SGN innervation and virtually eliminated MOC – mediated contralateral suppression from noise delivered to the opposite ear, measured as a reduction in cubic distortion product otoacoustic emissions. Electrical stimulation of the MOC pathway elicited contralateral suppression indistinguishable between wildtype (WT) and PrphKO mice, indicating that the loss of contralateral suppression was not due to disruption of the efferent arm of the circuit; IHC – type I SGN input was also normal, based on auditory brainstem responses. High-intensity, broadband noise (108 dB SPL, 1 hour) produced permanent hearing loss in PrphKO mice, but not in WT littermates. These findings associate OHC-type II input with MOC efferent - based otoprotection at loud sound levels.


2021 ◽  
pp. 108089
Author(s):  
A. Martinelli ◽  
B. Bianchi ◽  
C. Fratini ◽  
G. Handjaras ◽  
M. Fantoni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document