testing procedures
Recently Published Documents





2022 ◽  
Asif Hoq ◽  
Yann Caline ◽  
Erik Jakobsen ◽  
Neil Wood ◽  
Rob Stolpman ◽  

Abstract The Valhall field, operated by AkerBP, has been a major hub in the North Sea, on stream for thirty-eight years and recently passed one billion barrels of oil produced. The field requires stimulation for economical production. Mechanically strong formations are acid stimulated, while weaker formations require large tip-screenout design proppant fractures. Fracture deployment methods on Valhall have remained relatively unchanged since the nineties and are currently referred to as "conventional". Those consist in a sequence of placing a proppant frac, cleaning out the well with coiled tubing, opening a sleeve or shooting perforations, then coil pulling out of hole pumping the proppant frac. For the past few years, AkerBP and their service partners have worked on qualifying an adapted version of the annular coiled tubing fracturing practice for the offshore infrastructure - a first for the industry, which has been a strategic priority for the operator as it significantly reduces execution time and accelerates production. As with all technology trials, the implementation of this practice on Valhall had to begin on a learning curve through various forms of challenges. Whilst investigating the cause and frequency of premature screenouts during the initial implementation of annular fracturing, the team decided to challenge the conventional standards for fluid testing and quality control. Carefully engineered adjustments were made with regards to high shear testing conditions, temperature modelling, and mixing sequences, these did not only identify the root cause for the unexpected screenouts, but also helped create the current blueprint for engineering a robust fluid. Since the deployment of the redefined recipe, adjusted testing procedures and changes made to the stimulation vessel, there have not been any cases of fluid induced screenouts during the executions. The fewer types of additives now required for the recipe have lowered the cost of treatments and the lower gel loading leads to reduced damage in the fractures, thereby contributing to enhanced production over the lifetime of the wells. This paper describes the investigation, findings and the resulting changes made to the fluid formulation and quality control procedures to accommodate for high shear and dynamic wellbore temperature conditions. It discusses the rationale behind the "reality" testing model and, proves that significant value is created from investing time in thoroughly understanding fluid behaviour in the lab, prior to pumping it on large-scale capital-intensive operations. The study demonstrated that there is always value in innovating or challenging pre-conceived practices, and the learnings from this investigation significantly improved the track record for annular fracturing on Valhall, redefined fluid engineering for the North Sea and will inform future annular fracturing deployments on other offshore assets around the world.

Nikolay L Kazanskiy ◽  
Muhammad A Butt ◽  
Svetlana N Khonina

Currently, old-style personal medicare techniques rely mostly on traditional methods, such as cumbersome tools and complicated processes, which can be time-consuming and inconvenient in some circumstances. Furthermore, such old methods need the use of heavy equipment, blood draws, and traditional bench-top testing procedures. Invasive ways of acquiring test samples can potentially cause patients discomfort and anguish. Wearable sensors, on the other hand, may be attached to numerous body areas to capture diverse biochemical and physiological characteristics as a developing analytical tool. Physical, chemical, and biological data transferred via the skin is used to monitor health in various circumstances. Wearable sensors can assess the aberrant conditions of the physical or chemical components of the human body in real-time, exposing the body state in time, thanks to unintrusive sampling and high accuracy. Most commercially available wearable gadgets are mechanically hard components attached to bands and worn on the wrist, with form factors ultimately constrained by the size and weight of the batteries required for the power supply. Wearable gadgets with “skin-like” qualities are a new type of automation that is only starting to make its way out of research labs and into pre-commercial prototypes. In this paper, we studied the recent advancement in battery-powered wearable sensors established on optical phenomena and skin-like battery-free sensors which brings a breakthrough in wearable sensing automation.

2022 ◽  
Vol 12 ◽  
Roman Schefzik ◽  
Leonie Boland ◽  
Bianka Hahn ◽  
Thomas Kirschning ◽  
Holger A. Lindner ◽  

Statistical network analyses have become popular in many scientific disciplines, where an important task is to test for differences between two networks. We describe an overall framework for differential network testing procedures that vary regarding (1) the network estimation method, typically based on specific concepts of association, and (2) the network characteristic employed to measure the difference. Using permutation-based tests, our approach is general and applicable to various overall, node-specific or edge-specific network difference characteristics. The methods are implemented in our freely available R software package DNT, along with an R Shiny application. In a study in intensive care medicine, we compare networks based on parameters representing main organ systems to evaluate the prognosis of critically ill patients in the intensive care unit (ICU), using data from the surgical ICU of the University Medical Centre Mannheim, Germany. We specifically consider both cross-sectional comparisons between a non-survivor and a survivor group and longitudinal comparisons at two clinically relevant time points during the ICU stay: first, at admission, and second, at an event stage prior to death in non-survivors or a matching time point in survivors. The non-survivor and the survivor networks do not significantly differ at the admission stage. However, the organ system interactions of the survivors then stabilize at the event stage, revealing significantly more network edges, whereas those of the non-survivors do not. In particular, the liver appears to play a central role for the observed increased connectivity in the survivor network at the event stage.

2022 ◽  
Vol 12 ◽  
Matteo De Marco ◽  
Annalena Venneri

Background: Although performance on the category fluency test (CFT) is influenced by many cognitive functions (i.e., including language, executive functioning and speed of processing), item-level scoring methods of CFT performance might be a promising way to capture aspects of semantic memory that are less influenced by intervenient abilities. One such approach is based on the calculation of correlation coefficients that quantify the association between item-level features and the serial order with which words are recalled (SRO).Methods: We explored the neural underpinnings of 10 of these correlational indices in a sample of 40 healthy adults who completed a classic 1-min CFT and an MRI protocol inclusive of T1-weighted (analysed with voxel-based morphometry) and resting-state fMRI sequences for the evaluation of the default-mode network (DMN). Two sets of linear models were defined to test the association between neural maps and each correlational index: a first set in which major demographic and clinical descriptors were controlled for and a second set in which, additionally, all other 9 correlational indices were regressed out.Results: In the analysis of the DMN, ‘SRO-frequency’, ‘SRO-dominance’ and ‘SRO-body-object interaction’ correlational indices were all negatively associated with the anterior portion of the right temporoparietal junction. The ‘SRO-frequency’ correlational index was also negatively associated with the right dorsal anterior cingulate and the ‘SRO-dominance’ correlational index with the right lateral prefrontal cortex. From the second set of models, the ‘SRO-typicality’ correlational index was positively associated with the left entorhinal cortex. No association was found in relation to grey matter maps.Conclusion: The ability to retrieve more difficult words during CFT performance as measured by the correlational indices between SRO and item-level descriptors is associated with DMN expression in regions deputed to attentional reorienting and processing of salience of infrequent stimuli and dominance status. Of all item-level features, typicality appears to be that most closely linked with entorhinal functioning and may thus play a relevant role in assessing its value in testing procedures for early detection of subtle cognitive difficulties in people with suspected Alzheimer’s degeneration. Although exploratory, these findings warrant further investigations in larger cohorts.

2022 ◽  
Vol 2152 (1) ◽  
pp. 012049
Xuheng Han

Abstract The application of Nb3Sn superconductor joints is an important part in the production of ITER, MRI and so on. This paper first introduced the application, like coil of MRI, and basic information including the micro crystal structure of Nb3Sn superconductor, which includes the theoretical critical temperature of 18.1K, even mostly, experiments take place under 4.2K, which is the boiling point of liquid helium. Second, it talked a little about the production of CICC joints in industry. Then, mainly introduced the testing device, material parameters and testing procedures of resistance testing of Nb3Sn joints. Concluded all the data from several tests and summarized it. At last, it displayed some of its mechanical property especially about its brittle property and discussed some details in manufacture. Finally conclude about them all.

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Yang Wang ◽  
Sichun Men ◽  
Tingting Guo

Blockchain technology, as a database which combines encryption algorithm, smart contract, consensus mechanism, time stamp, and other technologies, has received wide attention from all walks of life and can be used to solve such problems as asymmetric, incomplete, and untimely information in both interenterprise transactions and enterprise internal control management as a good solution owing to its characteristics of decentralization, traceability, and tamper-proofness. Consequently, it is worthy of studying how to apply blockchain technology to daily business activities of enterprises. In this paper, some problems existing in the value chain activities of the enterprise internal procurement are analyzed by designing the solutions to requisition, warehousing, and payment based on blockchain technology, in which the Hyperledger Fabric platform is selected as an implementation tool to simulate some purchasing data for testing procedures. After the successful test, the research conclusions and research prospects of this paper are thus proposed, proving the feasibility of applying the blockchain technology to the internal value chain management of the enterprise, which provides reference for the construction of the internal value chain management of the enterprise by the blockchain.

2021 ◽  
Vol 19 (6) ◽  
pp. 676-693
Behailu Getachew Wolde ◽  
Abiot Sinamo Boltana

Cloud offers many ready-made REST services for the end users. This offer realizes the service composition through implementation somewhere on internet based on Service Level Agreement (SLA). For ensuring this SLA, a software testing is a useful means for attesting a non-functional requirement that guarantees quality assurance from end user's perspective. However, test engineer experiences only what goes in and out through an interface that contains a high level behaviors separated from its underlying details. Testing with these behaviors become an issue for classical testing procedures. So, REST API through composition is an alternative new promising approach for modeling behaviors with parameters against the cloud. This new approach helps to devise test effectiveness in terms of REST based behavior-driven implementation. It aims to understand functional behaviors through API methods based on input domain modeling (IDM) on the standard keyboard pattern. By making an effective REST design the test engineer sends complete test inputs to its API directly on application, and gets test responses from the infrastructure. We consider NEMo mobility API specification to design an IDM, which represents pattern match of mobility search URL API path scope. With this scope, sample mobility REST API service compositions are used. Then, the test assertions are implemented to validate each path resource to test the components and the end-to-end integration on the specified service.

2021 ◽  
Vol 8 ◽  
Edgar O. Aviles-Rosa ◽  
Shawna F. Gallegos ◽  
Paola A. Prada-Tiedemann ◽  
Nathaniel J. Hall

Currently, there is a need to develop technology that facilitates and improves detection dog research. The aim of this research was to develop an automated computer-driven olfactory line-up task. The apparatus consisted of three olfactometers. Each olfactometer was equipped with flow meters to regulate air flow and dilution and six solenoid valves connected to odor jars. Each olfactometer generated an odor which was carried to an odor port where the dogs sample it. The olfactometer's valves were activated by a microcontroller, and a Python program was built to control each olfactometer and randomize and balance the odor presentation. Dogs (N = 12) received one or two 40-trial training sessions in a day where they progressed through a series of training phases where they learned to detect and alert to double-base smokeless powder (SP). An “alert” consisted of a 4-s nose hold. This was measured by infrared sensors in the ports. For each trial, the apparatus recorded dogs' search latency, sniff time, port entries, and response. All this information was automatically recorded in a csv file. A photoionization detector (PID) and solid-phase microextraction followed by gas chromatography-mass spectrometry (SPME-GC/MS) were used to evaluate the odor dynamics and to instrumentally verify odor presence and clearance. A control test was conducted at the end of the training to ensure dogs were alerting exclusively to the odorant. All 12 dogs readily learned to operate the apparatus within 23 days, and all exceeded 85% accuracy. Control tests indicated dogs were leveraging only olfactory cues and not unintentional cues such as auditory cues from the apparatus. Analytical data showed that odor was detected in the port immediately after the activation of a valve and that odor clearance occurred immediately after the valve was closed. The apparatus developed was easy to operate by the dogs and allowed substantial data collection using double-blind testing procedures in a very short period at an affordable cost point for research equipment (~$5,000 USD). The apparatus may prove to be a useful research tool to provide optimal odor stimuli control, ensure double-blind conditions, reduce labor, and significantly increase the amount of data collected.

NeoBiota ◽  
2021 ◽  
Vol 70 ◽  
pp. 193-221
Rea Maria Hall ◽  
Bernhard Urban ◽  
Hana Skalova ◽  
Lenka Moravcová ◽  
Ulrike Sölter ◽  

Common ragweed (Ambrosia artemisiifolia L.) is an annual Asteraceae species native to North America which is highly invasive across Europe and has harmful impacts, especially on human health and agriculture. Besides its wide ecological range, particularly its high reproductive power by seeds is promoting its spread to various habitats and regions. To prevent further spread and to control the plant, the European Commission funded projects and COST-Actions involving scientists from all over Europe. A joint trial was set up comprising eight different laboratories from Europe to study seed viability variation in different seed samples. Three different testing methods (viability test with 2,3,5-triphenyltetrazolium chloride (TTC), a germination test combined with a subsequent TTC test and a crush test) were tested within the EU-COST-Action SMARTER network to four different seed origins. The viability test results from different laboratories were compared for variation amongst tests and laboratories. The main aim was to optimise the reliability of testing procedures, but results revealed not only significant effects of seed origin and seed age on seed viability, but also considerable differences between the output of the individual testing methods and furthermore between laboratories. Due to these significant differences in the results of the testing labs, additionally a second test was set up. Twelve Austrian ragweed populations were used for TTC testing to obtain a precise adjustment of the testing method as well as a tight guideline for interpreting the results, particularly for the TTC state “intermediate” since a proper classification of TTC-intermediate coloured seeds is still a challenge when determining viability rates.

Sign in / Sign up

Export Citation Format

Share Document