scholarly journals The cellular basis for different fetal hemoglobin levels among sickle cell individuals with two, three, and four alpha-globin genes

Blood ◽  
1987 ◽  
Vol 69 (1) ◽  
pp. 341-344 ◽  
Author(s):  
GJ Dover ◽  
VT Chang ◽  
SH Boyer ◽  
GR Serjeant ◽  
S Antonarakis ◽  
...  

Abstract Fetal hemoglobin (HbF) levels vary widely among individuals with sickle cell anemia (SS). Previous studies have suggested that HbF levels in SS individuals with alpha-thalassemia (two or three functional alpha- globin genes) are lower than HbF levels in SS individuals with four normal alpha-globin genes. Using immunocytochemical techniques, we studied F cell production as measured by % F reticulocytes, the amount of HbF per F cell, and the preferential survival of F cells versus non- F cells in 51 subjects with four alpha genes, 32 subjects with three alpha genes, and 18 subjects with two alpha genes. Comparison between alpha-globin gene groups was performed for the total sample as well as for a subset of 82 individuals who had replicate samples and a further subset of 39 age-matched individuals. %HbF levels were 6.8, 4.9, and 4.5 percent for the total four-, three-, and two-alpha-globin-gene groups, respectively. The percentage of F reticulocytes, percentage HbF per F cell, and the enrichment ratio (% F cell/% F reticulocytes) did not change significantly with alpha-globin gene number. Moreover, no correlation existed between alpha-globin gene number and the absolute number of F cells in any group studied. However, there was a strong inverse correlation (r = -0.407, P = .0001) between non-F cell levels (1.7 +/- 2, 2.2 +/- 5, 3.0 +/- 1.0 X 10(12)/L) and decreasing alpha- globin gene number. These data suggest that falling HbF levels among SS individuals with lessened numbers of alpha-globin genes reflect prolonged survival of non-F cells and are not due to intrinsic differences in F cell production or in the amount of HbF per F cell. The improved survival of non-F cells in SS alpha-thalassemia is presumed to be due to the lower MCHC observed in such individuals.

Blood ◽  
1987 ◽  
Vol 69 (1) ◽  
pp. 341-344 ◽  
Author(s):  
GJ Dover ◽  
VT Chang ◽  
SH Boyer ◽  
GR Serjeant ◽  
S Antonarakis ◽  
...  

Fetal hemoglobin (HbF) levels vary widely among individuals with sickle cell anemia (SS). Previous studies have suggested that HbF levels in SS individuals with alpha-thalassemia (two or three functional alpha- globin genes) are lower than HbF levels in SS individuals with four normal alpha-globin genes. Using immunocytochemical techniques, we studied F cell production as measured by % F reticulocytes, the amount of HbF per F cell, and the preferential survival of F cells versus non- F cells in 51 subjects with four alpha genes, 32 subjects with three alpha genes, and 18 subjects with two alpha genes. Comparison between alpha-globin gene groups was performed for the total sample as well as for a subset of 82 individuals who had replicate samples and a further subset of 39 age-matched individuals. %HbF levels were 6.8, 4.9, and 4.5 percent for the total four-, three-, and two-alpha-globin-gene groups, respectively. The percentage of F reticulocytes, percentage HbF per F cell, and the enrichment ratio (% F cell/% F reticulocytes) did not change significantly with alpha-globin gene number. Moreover, no correlation existed between alpha-globin gene number and the absolute number of F cells in any group studied. However, there was a strong inverse correlation (r = -0.407, P = .0001) between non-F cell levels (1.7 +/- 2, 2.2 +/- 5, 3.0 +/- 1.0 X 10(12)/L) and decreasing alpha- globin gene number. These data suggest that falling HbF levels among SS individuals with lessened numbers of alpha-globin genes reflect prolonged survival of non-F cells and are not due to intrinsic differences in F cell production or in the amount of HbF per F cell. The improved survival of non-F cells in SS alpha-thalassemia is presumed to be due to the lower MCHC observed in such individuals.


Blood ◽  
1995 ◽  
Vol 85 (4) ◽  
pp. 1111-1117 ◽  
Author(s):  
YC Chang ◽  
KD Smith ◽  
RD Moore ◽  
GR Serjeant ◽  
GJ Dover

Five factors have been shown to influence the 20-fold variation of fetal hemoglobin (Hb F) levels in sickle cell anemia (SS): age, sex, the alpha-globin gene number, beta-globin haplotypes, and an X-linked locus that regulates the production of Hb F-containing erythrocytes (F cells), ie, the F-cell production (FCP) locus. To determine the relative importance of these factors, we studied 257 Jamaican SS subjects from a Cohort group identified by newborn screening and from a Sib Pair study. Linear regression analyses showed that each variable, when analyzed alone, had a significant association with Hb F levels (P < .05). Multiple regression analysis, including all variables, showed that the FCP locus is the strongest predictor, accounting for 40% of Hb F variation. beta-Globin haplotypes, alpha-globin genes, and age accounted for less than 10% of the variation. The association between the beta-globin haplotypes and Hb F levels becomes apparent if the influence of the FCP locus is removed by analyzing only individuals with the same FCP phenotype. Thus, the FCP locus is the most important factor identified to date in determining Hb F levels. The variation within each FCP phenotype is modulated by factors associated with the three common beta-globin haplotypes and other as yet unidentified factor(s).


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3171-3171
Author(s):  
Russell E. Ware ◽  
Barry Eggleston ◽  
Tatiana Abramova ◽  
Sherri A. Zimmerman ◽  
Alice Lail ◽  
...  

Abstract Fetal hemoglobin (HbF) is recognized as a major determinant of clinical disease severity in children and adults with sickle cell anemia (SCA). Patients with elevated HbF levels have a milder disease course, and many current therapeutic protocols for SCA include pharmacological induction of HbF. However, baseline and treatment HbF levels vary widely due to presumed genetic and environmental factors. Recognized globin gene modifiers of HbF include the beta globin haplotype and a potential contribution from concomitant alpha thalassemia. To characterize more fully the influence of globin gene modifiers on both baseline and treatment HbF levels, we retrospectively determined the beta globin haplotype (Benin, CAR, Senegal, Cameroon, or Arab-Indian) by selective gamma globin gene nucleotide sequencing and the alpha globin gene number (2, 3, or 4) by PCR for 67 African-American children with SCA receiving hydroxyurea therapy at stable maximal tolerated dose (MTD). The four beta globin haplotypes and frequencies identified in our cohort of children include Benin (0.61), CAR (0.17), Senegal (0.12), and Cameroon (0.10). The number of alpha globin genes and frequencies identified were 4 genes (0.72), 3 genes (0.25) and 2 genes (0.03). Baseline and MTD HbF levels were analyzed according to each variable. The average baseline HbF value for the entire cohort of children was 7.7 ± 4.4% (median 7.6%, range 1.3 – 19.3%), while the average treatment HbF value was 23.9 ± 7.2 % (median 22.9%, range 10.2 – 40.7%). All 67 children increased their HbF in response to hydroxyurea therapy (median 16.7%, range 5.0 – 28.8%). There was a modest but statistically significant correlation between the baseline and treatment HbF (r=0.66, p&lt;.0001). The estimated effect of one unit change in baseline HbF on treatment HbF was 1.11 (95% CI of 0.78, 1.43). When baseline %HbF was analyzed according to the beta globin haplotype, the overall ANOVA had a p-value of 0.02, indicating a statistically significant influence. Further analysis confirmed associations previously identified in adults with SCA, i.e. children with at least one copy of the CAR haplotype had a lower baseline HbF (5.9% vs 8.4%, p=.05), while those with at least one copy of the Senegal haplotype had a higher baseline HbF (11.1% vs 6.7%, p&lt;.001). When hydroxyurea MTD (treatment) HbF values were analyzed according to beta globin haplotype while adjusting for baseline HbF, however, the effect of beta globin haplotype was not statistically significant (p=.13). Analyses of HbF according to alpha globin gene number revealed no statistically significant effects on either baseline or treatment HbF values. Taken together, these data support the hypothesis that beta globin haplotype significant influences baseline HbF values for children with SCA, but has no significant effects on hydroxyurea MTD HbF values. Accordingly, children with SCA should be offered hydroxyurea based solely on clinical indications, without consideration of baseline HbF or beta globin haplotype. Even children with low baseline HbF values or the CAR beta globin haplotype can respond to hydroxyurea therapy with an elevated %HbF. Future studies designed to identify genetic modifiers of treatment HbF values should focus on sequence polymorphisms in non-globin genes that have trans-acting effects on gamma globin gene expression.


Blood ◽  
1980 ◽  
Vol 55 (4) ◽  
pp. 706-708 ◽  
Author(s):  
G Brittenham ◽  
B Lozoff ◽  
JW Harris ◽  
YW Kan ◽  
AM Dozy ◽  
...  

Abstract Restriction endonuclease analysis was used to test a proposed genetic model using alpha-globin gene number to account for the observed distributions of the proportions of hemoglobin (Hb) S in sickle cell trait. In a subsample of specimens collected during a population survey in India, these studies confirmed that the postulated genotype was present in 22 of the 23 individuals examined. In the study population, the number of alpha-globin genes explains about 90% of the variance in the proportion of HbS in sickle cell trait (r2 = 0.895, p less than 10(- 10)).


Blood ◽  
1980 ◽  
Vol 55 (4) ◽  
pp. 706-708 ◽  
Author(s):  
G Brittenham ◽  
B Lozoff ◽  
JW Harris ◽  
YW Kan ◽  
AM Dozy ◽  
...  

Restriction endonuclease analysis was used to test a proposed genetic model using alpha-globin gene number to account for the observed distributions of the proportions of hemoglobin (Hb) S in sickle cell trait. In a subsample of specimens collected during a population survey in India, these studies confirmed that the postulated genotype was present in 22 of the 23 individuals examined. In the study population, the number of alpha-globin genes explains about 90% of the variance in the proportion of HbS in sickle cell trait (r2 = 0.895, p less than 10(- 10)).


Blood ◽  
1986 ◽  
Vol 67 (2) ◽  
pp. 411-414 ◽  
Author(s):  
MC Stevens ◽  
GH Maude ◽  
M Beckford ◽  
Y Grandison ◽  
K Mason ◽  
...  

alpha Thalassemia modifies the hematologic expression of homozygous sickle cell (SS) disease, resulting in increased total hemoglobin and HbA2 and decreased HbF, mean cell volume, reticulocytes, irreversibly sickled cells, and bilirubin levels. The age at which these changes develop in children with SS disease is unknown. Ascertainment of globin gene status in a large representative sample of children with SS disease has afforded an opportunity to study the hematologic indices in nine children homozygous for alpha thalassemia 2 (two-gene group), 90 children heterozygous for alpha thalassemia 2 (three-gene group), and 167 children with a normal alpha globin gene complement (four-gene group). The two-gene group had significantly lower mean cell volumes from birth, higher red cell counts from one month, lower reticulocytes from three months, and higher HbA2 levels from one year, as compared with the four-gene group. Children with three genes had intermediate indices but resembled more closely the four-gene group. Differences in total hemoglobin or in fetal hemoglobin between the groups were not apparent by eight years of age. The most characteristic differences of the two-gene group were the raised proportional HbA2 level and low mean cell volume, the latter having some predictive value for alpha thalassemia status at birth.


Blood ◽  
1996 ◽  
Vol 88 (5) ◽  
pp. 1846-1851 ◽  
Author(s):  
J Chang ◽  
RH Lu ◽  
SM Xu ◽  
J Meneses ◽  
K Chan ◽  
...  

We have disrupted the 5′ locus of the duplicated adult alpha-globin genes by gene targeting in the mouse embryonic stem cells and created mice with alpha-thalassemia syndromes. The heterozygous knockout mice (.alpha/alpha alpha) are asymptomatic like the silent carriers in humans whereas the homozygous knockout mice (.alpha/.alpha) show hemolytic anemia. Mice with three dysfunctional alpha-globin genes generated by breeding the 5′ alpha-globin knockouts (.alpha/alpha alpha) and the deletion type alpha-thalassemia mice (../alpha alpha) produce severe hemoglobin H disease and they die in utero. These results indicate that the 5′ alpha-globin gene is the predominant locus in mice, and suggest that it is even more dominant than its human homologue.


Blood ◽  
1992 ◽  
Vol 80 (3) ◽  
pp. 816-824 ◽  
Author(s):  
GJ Dover ◽  
KD Smith ◽  
YC Chang ◽  
S Purvis ◽  
A Mays ◽  
...  

Abstract Fetal hemoglobin (Hb F) production in sickle cell (SS) disease and in normal individuals varies over a 20-fold range and is under genetic control. Previous studies suggested that variant Hb F levels might be controlled by genetic loci separate from the beta-globin complex on chromosome 11. Using microscopic radial immunodiffusion and flow cytometric immunofluorescent assays to determine the percentage of F reticulocytes and F cells in SS and nonanemic individuals, we observed that F-cell levels were significantly higher in nonanemic females than males (mean +/- SD, 3.8% +/- 3.2% v 2.7% +/- 2.3%). F-cell production as determined by F reticulocyte levels in SS females was also higher than in SS males (17% +/- 10% v 13% +/- 8%). We tested the hypothesis that F-cell production in both normal and anemic SS individuals was controlled by an X-linked locus with two alleles, high (H) and low (L). Using an algorithm to determine the 99.8% confidence interval of a normal distribution in nonanemic individuals, we estimated that males and females with at least one H allele had greater than 3.3% F cells. Comparisons of male-male or female-female SS sib pairs with discordant F reticulocyte levels distinguished two phenotypes in SS males (L, less than 12%; H, greater than 12%) and three phenotypes in SS females (LL, less than 12%; HL, 12% to 24%, HH greater than 24%). Linkage analysis using polymorphic restriction sites along the X chromosome in eight SS and one AA family localized the F-cell production (FCP) locus to Xp22.2, with a maximum lod score (logarithm of odds of linkage v independent assortment) of 4.6 at a recombination fraction of 0.04.


Blood ◽  
1979 ◽  
Vol 54 (6) ◽  
pp. 1407-1416 ◽  
Author(s):  
LE Lie-Injo ◽  
AM Dozy ◽  
YW Kan ◽  
M Lopes ◽  
D Todd

Abstract Two Chinese patients with HbQ-alpha 2 74 Asp replaced by His beta 2- alpha-thalassemia, one HbQ-alpha 2 74 or 75 Asp replaced by His beta 2 carrier, and one HbG-alpha 2 30 Glu replaced by Gln beta 2 carrier were studied to determine the number of alpha-globin genes in their chromosomes. DNA was isolated from white blood cells and bone marrow cells and studied by liquid hybridization and by hybridization of DNA fragments obtained by restriction enzyme endonuclease digestion (Ecr to nitrocellulose filters. The liquid hybridization analysis showed that in HbQ-alpha 2 74 Asp replaced by His beta 2-alpha-thalassemia, as in HbH disease, only one-fourth of the usual number of alpha-globin genes is present. Hybridization patterns of DNA restriction enzyme fragments showed that in HbQ-alpha 2 74 Asp replaced by His beta 2-alpha- thalassemia one chromosome has both alpha-globin genes deleted and the other chromosome, which carries the alpha-mutant gene, has one alpha- globin gene deleted. Our results show that the HbQ-alpha 74 Asp replaced by His structural gene is located adjacent to a deleted alpha- globin gene, whereas the alpha-globin gene adjacent to HbG-alpha 30 Glu replaced by Gln gene is not deleted.


Blood ◽  
1986 ◽  
Vol 67 (2) ◽  
pp. 411-414 ◽  
Author(s):  
MC Stevens ◽  
GH Maude ◽  
M Beckford ◽  
Y Grandison ◽  
K Mason ◽  
...  

Abstract alpha Thalassemia modifies the hematologic expression of homozygous sickle cell (SS) disease, resulting in increased total hemoglobin and HbA2 and decreased HbF, mean cell volume, reticulocytes, irreversibly sickled cells, and bilirubin levels. The age at which these changes develop in children with SS disease is unknown. Ascertainment of globin gene status in a large representative sample of children with SS disease has afforded an opportunity to study the hematologic indices in nine children homozygous for alpha thalassemia 2 (two-gene group), 90 children heterozygous for alpha thalassemia 2 (three-gene group), and 167 children with a normal alpha globin gene complement (four-gene group). The two-gene group had significantly lower mean cell volumes from birth, higher red cell counts from one month, lower reticulocytes from three months, and higher HbA2 levels from one year, as compared with the four-gene group. Children with three genes had intermediate indices but resembled more closely the four-gene group. Differences in total hemoglobin or in fetal hemoglobin between the groups were not apparent by eight years of age. The most characteristic differences of the two-gene group were the raised proportional HbA2 level and low mean cell volume, the latter having some predictive value for alpha thalassemia status at birth.


Sign in / Sign up

Export Citation Format

Share Document