scholarly journals Restriction of cell lysis by homologous complement: I. An analysis of membrane attack complex formation on target membranes

Blood ◽  
1988 ◽  
Vol 71 (2) ◽  
pp. 280-286 ◽  
Author(s):  
JJ Houle ◽  
EM Hoffmann ◽  
AF Esser

Abstract The hemolytic efficiency and binding of C9 to homologous and heterologous erythrocytes was evaluated by using a standardized passive sensitization procedure to prepare antigen- and antibody-coated erythrocytes (EA) and human serum for lysis. Heterologous bovine EA were readily lysed by human serum, whereas human EA were quite resistant to lysis. Human EA bound as many C8 and C9 molecules per cell as bovine EA when incubated under identical conditions, but four times as much bound C9 was required to lyse an equal number of human EA compared with bovine EA. The susceptibility of human erythrocytes did not increase when increased volumes of undiluted human serum were used although C9 binding increased to as much as 100,000 molecules per cell. Sodium dodecyl sulfate-resistant polymerized C9 (poly(C9)) was detected on both lysed ghosts and unlysed EA bearing complement proteins C1 through C9 (EAC1–9) after incubation with undiluted human serum; however, the ratio of poly(C9) to monomeric C9 was higher on unlysed cells than on ghosts. Although bovine and human EA bound equal amounts of human C9 at the end point, the rate of lysis and C9 uptake was slower on homologous cells. The rate-limiting step occurred before C9 binding and lysis because the rates of lysis and C9 binding were equal on homologous and heterologous EAC1–8 targets, but the extent of lysis of homologous cells was still lower than lysis of heterologous cells. Human erythrocytes lose restriction against homologous hemolysis during storage in autologous plasma or in isotonic buffers.

Blood ◽  
1988 ◽  
Vol 71 (2) ◽  
pp. 280-286
Author(s):  
JJ Houle ◽  
EM Hoffmann ◽  
AF Esser

The hemolytic efficiency and binding of C9 to homologous and heterologous erythrocytes was evaluated by using a standardized passive sensitization procedure to prepare antigen- and antibody-coated erythrocytes (EA) and human serum for lysis. Heterologous bovine EA were readily lysed by human serum, whereas human EA were quite resistant to lysis. Human EA bound as many C8 and C9 molecules per cell as bovine EA when incubated under identical conditions, but four times as much bound C9 was required to lyse an equal number of human EA compared with bovine EA. The susceptibility of human erythrocytes did not increase when increased volumes of undiluted human serum were used although C9 binding increased to as much as 100,000 molecules per cell. Sodium dodecyl sulfate-resistant polymerized C9 (poly(C9)) was detected on both lysed ghosts and unlysed EA bearing complement proteins C1 through C9 (EAC1–9) after incubation with undiluted human serum; however, the ratio of poly(C9) to monomeric C9 was higher on unlysed cells than on ghosts. Although bovine and human EA bound equal amounts of human C9 at the end point, the rate of lysis and C9 uptake was slower on homologous cells. The rate-limiting step occurred before C9 binding and lysis because the rates of lysis and C9 binding were equal on homologous and heterologous EAC1–8 targets, but the extent of lysis of homologous cells was still lower than lysis of heterologous cells. Human erythrocytes lose restriction against homologous hemolysis during storage in autologous plasma or in isotonic buffers.


Blood ◽  
1994 ◽  
Vol 84 (1) ◽  
pp. 325-330 ◽  
Author(s):  
GF Gaetani ◽  
HN Kirkman ◽  
R Mangerini ◽  
AM Ferraris

The catalase within normal, intact human erythrocytes was completely inactivated with amino triazole. The rate of 14CO2 evolution, when the cells were subsequently incubated with 14C-labeled glucose, provided a measure of the rate at which NADPH was being oxidized by the glutathione peroxidase/reductase system for the disposal of H2O2. This rate was determined in control cells and in catalase-inactivated cells while the cells were exposed to H2O2, which was generated at various constant and predetermined rates by glucose oxidase. The results indicated that catalase handles approximately half of the generated H2O2. The glutathione peroxidase/reductase mechanism accounted for the other half. These results are in agreement with our earlier findings on erythrocytes of a subject with a genetic deficiency of catalase. However, an unexpected result with the present approach was the finding that the increased dependence on the glutathione peroxidase/reductase mechanism did not occur until greater than 98% of the catalase had been inactivated. The latter observation indicates that catalase and the glutathione peroxidase/reductase system function intracellularly in a manner very different from that previously ascribed to them. An explanation of the findings requires that the two methods of H2O2 disposal function in a coordinated way, such as a sequential action in which the glutathione peroxidase/reductase system is the rate-limiting step.


Blood ◽  
1994 ◽  
Vol 84 (1) ◽  
pp. 325-330 ◽  
Author(s):  
GF Gaetani ◽  
HN Kirkman ◽  
R Mangerini ◽  
AM Ferraris

Abstract The catalase within normal, intact human erythrocytes was completely inactivated with amino triazole. The rate of 14CO2 evolution, when the cells were subsequently incubated with 14C-labeled glucose, provided a measure of the rate at which NADPH was being oxidized by the glutathione peroxidase/reductase system for the disposal of H2O2. This rate was determined in control cells and in catalase-inactivated cells while the cells were exposed to H2O2, which was generated at various constant and predetermined rates by glucose oxidase. The results indicated that catalase handles approximately half of the generated H2O2. The glutathione peroxidase/reductase mechanism accounted for the other half. These results are in agreement with our earlier findings on erythrocytes of a subject with a genetic deficiency of catalase. However, an unexpected result with the present approach was the finding that the increased dependence on the glutathione peroxidase/reductase mechanism did not occur until greater than 98% of the catalase had been inactivated. The latter observation indicates that catalase and the glutathione peroxidase/reductase system function intracellularly in a manner very different from that previously ascribed to them. An explanation of the findings requires that the two methods of H2O2 disposal function in a coordinated way, such as a sequential action in which the glutathione peroxidase/reductase system is the rate-limiting step.


1978 ◽  
Vol 39 (02) ◽  
pp. 496-503 ◽  
Author(s):  
P A D’Amore ◽  
H B Hechtman ◽  
D Shepro

SummaryOrnithine decarboxylase (ODC) activity, the rate-limiting step in the synthesis of polyamines, can be demonstrated in cultured, bovine, aortic endothelial cells (EC). Serum, serotonin and thrombin produce a rise in ODC activity. The serotonin-induced ODC activity is significantly blocked by imipramine (10-5 M) or Lilly 11 0140 (10-6M). Preincubation of EC with these blockers together almost completely depresses the 5-HT-stimulated ODC activity. These observations suggest a manner by which platelets may maintain EC structural and metabolic soundness.


Diabetes ◽  
1993 ◽  
Vol 42 (2) ◽  
pp. 296-306 ◽  
Author(s):  
D. C. Bradley ◽  
R. A. Poulin ◽  
R. N. Bergman

Sign in / Sign up

Export Citation Format

Share Document