genetic deficiency
Recently Published Documents


TOTAL DOCUMENTS

217
(FIVE YEARS 34)

H-INDEX

40
(FIVE YEARS 5)

Author(s):  
Lisa M. Godsel ◽  
Quinn R. Roth-Carter ◽  
Jennifer L. Koetsier ◽  
Lam C. Tsoi ◽  
Amber L. Huffine ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Sisi Wei ◽  
Suli Dai ◽  
Cong Zhang ◽  
Ruinian Zhao ◽  
Zitong Zhao ◽  
...  

Gastric cancer (GC) is one of the deadliest cancers, and long noncoding RNAs (lncRNAs) have been reported to be the important regulators during the occurrence and development of GC. The present study identified a novel and functional lncRNA in GC, named NR038975, which was confirmed to be markedly upregulated in the Gene Expression Profiling Interactive Analysis (GEPIA) dataset and our independent cohort of GC tissues. We firstly characterized the full-length sequence and subcellular location of NR038975 in GC cells. Our data demonstrated that upregulated NR038975 expression was significantly related to lymph node metastasis and TNM stage. In addition, knockdown of NR038975 inhibited GC cell proliferation, migration, invasion, and clonogenicity and vice versa. Mechanistically, RNA pull-down and mass spectrometry assays identified the NR038975-binding proteins and NF90/NF45 complex, and the binding was also confirmed by RNA immunoprecipitation and confocal experiments. We further demonstrated that genetic deficiency of NR038975 abrogated the interaction between NF45 and NF90. Moreover, NF90 increased the stability of NR038975. Thus, NR038975-NF90/NF45 will be an important combinational target of GC. Finally, we detected NR038975 in serum exosomes and serum of GC patients. Our results indicated that NR038975 was a biomarker for gastric tumorigenesis. The current study demonstrated that NR038975 is a novel lncRNA that is clinically and functionally engaged in GC progression and might be a novel diagnostic marker and potential therapeutic target.


2021 ◽  
Vol 17 (3) ◽  
pp. 22-37
Author(s):  
D.V. Maltsev

Relevance. The results of five meta-analyzes of randomized controlled clinical trials indicate an association between genetic deficiency of the folate cycle (GDFC) and autism spectrum disorders (ASD) in children. Autoimmune mechanisms play a special role in the pathogenesis of encephalopathy in children with ASD associated with GDFC. Objective: to study the structure of autoimmune reactions in children with ASD associated with GDFC, according to the accumulated evidence base and to identify associations of laboratory signs of autoimmunity and microorganisms to improve understanding of encephalopathy pathogenesis and diagnostic, monitoring and treatment algorithms. Materials and methods. The medical data of 225 children aged 2 to 9 years with GDFC, who had clinical manifestations of ASD (183 boys and 42 girls) were retrospectively analyzed. The diagnosis of ASD was made by child psychiatrists according to the criteria DSM-IV-TR (Diagnostic and Statistical Manual of mental disorders) and ICD-10 (The International Statistical Classification of Diseases and Related Health Problems) (study group; SG). The control group (CG) included 51 clinically healthy children (37 boys and 14 girls) of similar age and gender distribution who did not suffer from GDFC and ASD. Pathogenic polymorphic variants of folate cycle genes were determined by PCR with restriction (Sinevo, Ukraine). Autoantibodies to autoantigens of CNS subcortical ganglion neurons in blood serum were determined using a Cunningham panel (Moleculera Labs, Inc, USA). Serum autoantibodies to neurons of the mesolimbic system of the brain were identified by ELISA (MDI Limbach Berlin GmbH, Germany). Autoimmunization to myelin was assessed by serum autoantibody titer to basic myelin protein (ELISA) and signs of neutrophil and CD8+ T-lymphocyte sensitization to hemispheric white matter autoantigens (cell-based assay; department of neuroimmunology at the Neurosurgery Institute; Ukraine). Serum autoantibodies to nuclei of connective tissue cells and striated muscle proteins were determined by western blot analysis (Sinevo, Ukraine). To determine the significance of the differences between the indicators in the observation groups, we used the Student's parametric T-test with the confidence probability p and the nonparametric criterion – the number of signs Z according to Urbach Yu.V. The odds ratio (OR) and the 95% confidence interval (95% CI) were used to study the associations between the studied indicators. The study was performed as a fragment of research work commissioned by the Ministry of Health of Ukraine (№ state registration 0121U107940). Research. Positive results of the Cunningham panel occurred in 32%, laboratory signs of autoimmunization to neurons of the mesolimbic system – 36%, myelin of white matter of the hemispheres – 43%, nuclei autoantigens of connective tissue cells – 53%, proteins of striated muscles – 48% of cases among children SG (in general – 68% of cases; p < 0.05; Z < Z0.05). Serological signs of autoimmunization to autoantigens of the subcortical ganglia of the cerebral hemispheres were associated with Streptococcus pyogenes and Borrelia, to neurons of the mesolimbic system – EBV, HHV-6, HHV-7, Toxoplasma and TTV, to CNS myelin – EBV, HHV-6, HHV-7, Borrelia and TTV, to the nuclei of connective tissue cells and striated muscles – EBV, HHV-6, HHV-7, Borrelia and TTV. Conclusions. In children with ASD associated with GDFC laboratory sings of microbial-induced autoimmunity to a number of cerebral and extracerebral autoantigens has been evaluated, which affects the mental and physical health of patients and is a potential target for effective therapeutic interventions.


2021 ◽  
Vol 14 (9) ◽  
Author(s):  
Bernhard N. Bohnert ◽  
Irene Gonzalez-Menendez ◽  
Thomas Dörffel ◽  
Jonas C. Schneider ◽  
Mengyun Xiao ◽  
...  

ABSTRACT Susceptibility to doxorubicin-induced nephropathy (DIN), a toxic model for the induction of proteinuria in mice, is related to the single-nucleotide polymorphism (SNP) C6418T of the Prkdc gene encoding for the DNA-repair enzyme DNA-PKcs. In addition, plasminogen (Plg) has been reported to play a role in glomerular damage. Here, we investigated the interdependence of both factors for the development of DIN. Genotyping confirmed the SNP of the Prkdc gene in C57BL/6 (PrkdcC6418/C6418) and 129S1/SvImJ (PrkdcT6418/T6418) mice. Intercross of heterozygous 129SB6F1 mice led to 129SB6F2 hybrids with Mendelian inheritance of the SNP. After doxorubicin injection, only homozygous F2 mice with PrkdcT6418/T6418 developed proteinuria. Genetic deficiency of Plg (Plg−/−) in otherwise susceptible 129S1/SvImJ mice led to resistance to DIN. Immunohistochemistry revealed glomerular binding of Plg in Plg+/+ mice after doxorubicin injection involving histone H2B as Plg receptor. In doxorubicin-resistant C57BL/6 mice, Plg binding was absent. In conclusion, susceptibility to DIN in 129S1/SvImJ mice is determined by a hierarchical two-hit process requiring the C6418T SNP in the Prkdc gene and subsequent glomerular binding of Plg. This article has an associated First Person interview with the first author of the paper.


2021 ◽  
pp. 105273
Author(s):  
Jinhee Lee ◽  
Jongmin Lee ◽  
Saseong Lee ◽  
Seung-Ah Yoo ◽  
Ki-Myo Kim ◽  
...  

Author(s):  
Mark Colin Gissler ◽  
Nathaly Anto-Michel ◽  
Jan Pennig ◽  
Philipp Scherrer ◽  
Xiaowei Li ◽  
...  

Objective: The accumulation of inflammatory leukocytes is a prerequisite of adipose tissue inflammation during cardiometabolic disease. We previously reported that a genetic deficiency of the intracellular signaling adaptor TRAF5 (TNF [tumor necrosis factor] receptor–associated factor 5) accelerates atherosclerosis in mice by increasing inflammatory cell recruitment. Here, we tested the hypothesis that an impairment of TRAF5 signaling modulates adipose tissue inflammation and its metabolic complications in a model of diet-induced obesity in mice. Approach and Results: To induce diet-induced obesity and adipose tissue inflammation, wild-type or Traf5 −/− mice consumed a high-fat diet for 18 weeks. Traf5 −/− mice showed an increased weight gain, impaired insulin tolerance, and increased fasting blood glucose. Weight of livers and peripheral fat pads was increased in Traf5 −/− mice, whereas lean tissue weight and growth were not affected. Flow cytometry of the stromal vascular fraction of visceral adipose tissue from Traf5 −/− mice revealed an increase in cytotoxic T cells, CD11c + macrophages, and increased gene expression of proinflammatory cytokines and chemokines. At the level of cell types, expression of TNFα, MIP (macrophage inflammatory protein)-1α, MCP (monocyte chemoattractant protein)-1, and RANTES (regulated on activation, normal T-cell expressed and secreted) was significantly upregulated in Traf5 -deficient adipocytes but not in Traf5 -deficient leukocytes from visceral adipose tissue. Finally, Traf5 expression was lower in adipocytes from obese patients and mice and recovered in adipose tissue of obese patients one year after bariatric surgery. Conclusions: We show that a genetic deficiency of TRAF5 in mice diet-induced obesity and its metabolic derangements by a proinflammatory response in adipocytes. Our data indicate that TRAF5 may promote anti-inflammatory and obesity-preventing signaling events in adipose tissue.


Author(s):  
Yasuyuki Nagasawa ◽  
Takahiro Okumura ◽  
Yasuhiro Hara ◽  
Toru Kondo ◽  
Midori Hasegawa ◽  
...  

2021 ◽  
Vol 20 (2) ◽  
pp. 211-216
Author(s):  
Dmitry Maltsev ◽  
◽  
Volodymyr Stefanyshyn ◽  

Objectives. The results of previous small clinical trials indicate the potential benefit of combination immunotherapy with Propes and Inflamafertin to compensate for NK and NKT cell deficiency due to genetic deficiency of the folate cycle in children with autism spectrum disorders. The purpose of the research was to study the effectiveness of combined immunotherapy with Propes and Inflamafertin in NK and NKT cell deficiency in children with autism spectrum disorders associated with genetic deficiency of the folate cycle. Material and methods. This single-center, prospective, controlled, nonrandomized clinical trial included 96 children aged 2 to 10 years with autism spectrum disorders associated with a genetic folate deficiency (study group, SG). Children of SG received Propes at a dose of 2 ml IM every other day for 3 consecutive months (45 injections), and Inflamafertin at a dose of 2 ml IM every other day for 3 months in a row, alternating with Propes (45 injections). The control group (CG) consisted of 32 children of similar age and gender distribution who suffered from autism spectrum disorders associated with genetic deficiency of the folate cycle, but who did not receive immunotherapy. Outcomes. The number of NK cells reached the lower limit of normal in 39 out of 53 patients (74% of cases), with the resulting deficiency of these lymphocytes, and the average number of NK cells in the blood in SG almost doubling during the 3-month course of immunotherapy (р ˂ 0.05; Z ˂ Z0.05). However, it returned to almost initial level in the 2 months following the discontinuation of immunotherapeutic agents (р˃0.05; Z˃Z0.05). The number of NKT cells was normalized in 78 out of 87 patients (89% of cases) with an initial deficiency of these cells, and the average number of NKT cells in the blood in the DG increased during the course of immunotherapy by half (р ˂ 0.05; Z ˂ Z0.05) and continued to grow for the next 2 months after the discontinuation of immunotropic drugs (р ˂ 0.05; Z ˂ Z0.05). There was a link between immunotherapy and normalization of NK - (χ2 = 18.016; OR = 13.929; 95%CI = 3.498-55.468) and NKT-cells (χ2 = 60.65; OR = 46.800; 95%CI = 14.415-151.937) in the blood with a strong association between these processes (criterion φ = 0.504 and 0.715 respectively; С = 0.450 and 0.581 respectively). Conclusions. Combination immunotherapy with Propes and Inflamafertin is an effective strategy for the treatment of immunodeficiency caused by genetic deficiency of the folate cycle in children with autism spectrum disorders.


2021 ◽  
Author(s):  
Nina Miljanovic ◽  
Stefanie M. Hauck ◽  
R. Maarten van Dijk ◽  
Valentina Di Liberto ◽  
Ali Rezaei ◽  
...  

AbstractBackgroundDravet syndrome is a rare, severe pediatric epileptic encephalopathy associated with intellectual and motor disabilities. Proteomic profiling in a mouse model of Dravet syndrome can provide information about the molecular consequences of the genetic deficiency and about pathophysiological mechanisms developing during the disease course.MethodsA knock-in mouse model of Dravet syndrome with Scn1a haploinsufficiency was used for whole proteome, seizure and behavioral analysis. Hippocampal tissue was dissected from two-(prior to epilepsy manifestation) and four-(following epilepsy manifestation) week-old male mice and analyzed using LC-MS/MS with label-free quantification. Proteomic data sets were subjected to bioinformatic analysis including pathway enrichment analysis. The differential expression of selected proteins was confirmed by immunohistochemical staining.ResultsThe findings confirmed an increased susceptibility to hyperthermia-associated seizures, the development of spontaneous seizures, and behavioral alterations in the novel Scn1a-A1873V mouse model of Dravet syndrome. As expected, proteomic analysis demonstrated more pronounced alterations following epilepsy manifestation. In particular, proteins involved in neurotransmitter dynamics, receptor and ion channel function, synaptic plasticity, astrogliosis, neoangiogenesis, and nitric oxide signaling showed a pronounced regulation in Dravet mice. Pathway enrichment analysis identified several significantly regulated pathways at the later time point, with pathways linked to synaptic transmission and glutamatergic signaling dominating the list.ConclusionIn conclusion, the whole proteome analysis in a mouse model of Dravet syndrome demonstrated complex molecular alterations in the hippocampus. Some of these alterations may have an impact on excitability or may serve a compensatory function, which, however, needs to be further confirmed by future investigations. The proteomic data indicate that, due to the molecular consequences of the genetic deficiency, the pathophysiological mechanisms may become more complex during the course of the disease. Resultantly, the management of Dravet syndrome may need to consider further molecular and cellular alterations. Ensuing functional follow-up studies, this data set may provide valuable guidance for the future development of novel therapeutic approaches.


Sign in / Sign up

Export Citation Format

Share Document