decarboxylase activity
Recently Published Documents


TOTAL DOCUMENTS

1748
(FIVE YEARS 36)

H-INDEX

71
(FIVE YEARS 3)

2022 ◽  
Vol 11 (2) ◽  
pp. 404
Author(s):  
Benjamin Billiet ◽  
Juan Manuel Chao de la Barca ◽  
Marc Ferré ◽  
Jeanne Muller ◽  
Anaïs Vautier ◽  
...  

About half of patients with Graves’ disease develop an orbitopathy related to an inflammatory expansion of the periorbital adipose tissue and muscles. We used a targeted metabolomic approach measuring 188 metabolites by mass spectrometry to compare the metabolic composition of tears in patients with active (n = 21) versus inactive (n = 24) thyroid-associated orbitopathy. Among the 44 metabolites accurately measured, 8 showed a significant alteration of their concentrations between the two groups. Two short-chain acylcarnitines, propionylcarnitine and butyrylcarnitine, and spermine showed increased concentrations in the tears of patients with active orbitopathy, whereas ornithine, glycine, serine, citrulline and histidine showed decreased concentrations in this group. In addition, the ratio putrescine/ornithine, representing the activity of ornithine decarboxylase, was significantly increased in patients with active compared to inactive orbitopathy (p = 0.0011, fold change 3.75). The specificity of this candidate biomarker was maintained when compared to a control group with unclassified dry eye disease. Our results suggest that the stimulation of ornithine decarboxylase by TSH receptor autoantibodies in orbital fibroblasts could lead to increased synthesis of spermine, through the increased activity of ornithine decarboxylase, that may contribute to periorbital expansion in Graves’ ophthalmopathy.


2021 ◽  
Author(s):  
Lin Shu ◽  
Jinjie Gu ◽  
Qinghui Wang ◽  
Shaoqi Sun ◽  
Youtian Cui ◽  
...  

Abstract Background Klebsiella pneumoniae contains an endogenous isobutanol synthesis pathway. ipdC, annotated as an indole-3-pyruvate decarboxylase (Kp-IpdC), was identified to catalyze the formation of isobutyraldehyde from 2-ketoisovalerate. Results Compared with 2-ketoisovalerate decarboxylase from Lactococcus lactis (KivD), a decarboxylase commonly used in artificial isobutanol synthesis, Kp-IpdC has an 2.8-fold lower Km for 2-ketoisovalerate, leading to higher isobutanol production without induction. However, high level expression of ipdC by induction resulted in a low isobutanol titer. In vitro enzymatic reactions showed that Kp-IpdC exhibits promiscuous pyruvate decarboxylase activity, which adversely consume the available pyruvate precursor for isobutanol synthesis. To address this we have engineered Kp-IpdC to reduce pyruvate decarboxylase activity. From computational modeling we identified 10 residues surrounding the active site for mutagenesis. Ten designs consisting of eight single-point mutants and two double-mutants were selected for exploration. Mutants L546W and T290L showed 5.1% and 22.1% of catalytic efficiency on pyruvate, which were then expressed in K. pneumoniae for in vivo test. Isobutanol production by K. pneumoniae T290L was 25% higher than the control strain, and a final titer of 5.5 g/L isobutanol was obtained with a substrate conversion ratio of 0.16 mol/mol glucose. Conclusions This research provides a new way to improve the efficiency of the biological route of isobutanol production.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qiao Shi ◽  
Xinrui Wang ◽  
Zijing Ju ◽  
Biqin Liu ◽  
Changwei Lei ◽  
...  

Nuodeng ham is known for its unique processing techniques and flavor. In the present study, proteolytic microorganisms from cured artisanal Nuodeng ham were investigated in order to identify and select potential starter cultures for its faster and safer fermentation. Eight isolates, accounting for 57% of proteolytic microorganisms, were found to be related to Kocuria rhizophila. Relevant properties of K. rhizophila as potential starter culture were evaluated in vitro for the first time. Intra-species diversities were found in phylogenetic and physiological properties of K. rhizophila isolates. Nevertheless, desirable attributes, such as halo-tolerance, nitrate reductase and protease activity, as well as the absence of antimicrobial resistance and amino acid decarboxylase activity, were observed in selected isolates. Moreover, genome analysis of isolates K24 and K45 confirmed their lack of typical genes for virulence, antimicrobial resistance and amino acid decarboxylase. K. rhizophila may thus represent a novel starter candidate of coagulase-negative cocci group and contribute to color and flavor development of fermented meats.


2021 ◽  
pp. 101434
Author(s):  
Sarah G. Whaley ◽  
Christopher D. Radka ◽  
Chitra Subramanian ◽  
Matthew W. Frank ◽  
Charles O. Rock

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Sai Yang ◽  
Yajia Wen

Motivation. Skin tumor is one of the frequent occurring forms of cancer where 2-3 million instances are reported worldwide. The ultraviolet rays along with the environmental pollutants and other contaminants can be the potential factors of skin cancer. Cyclin D1 is a serious gene included in controlling the development through the G1 phase of the cell cycle. Ochratoxin A (OTA) is a naturally existing mycotoxin which majorly occurs in food like grains. It is responsible for producing the splitting of single-strand DNA and is identified to be cancer-causing. It is established as a critical risk factor towards reproductive health in both males and females. Methodology. A single dose of ochratoxin A was used for topical application for assessment of skin tumor promotion activity, hyperplasia, ornithine decarboxylase activity, and expression of cyclin D1 and COX-2 in mouse skin. Enhancement in the synthesis of DNA, activation of the epidermal growth factor receptor, and overexpression of cyclin D1 and COX-2 were noted. Primary murine keratinocyte cell culture was cultured with Waymouth’s medium. Western blot analysis and real-time polymerase chain reaction (RT-PCR) were used to detect the expression of cyclin D1 and COX-2. Chromatin immunoprecipitation (ChIP) assays were used to the association between AP-1 transcription and nuclear factor-kappaB (NF-κB) with COX-2 and cyclin D1 promoters. Results. The results found that cyclin D1 and COX-2 were responsible for stimulating OTA-induced PMK proliferation and hyperplasia. Implications. EGFR-mediated pathways were also responsible for tumor promotion due to OTA.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Annica Saaret ◽  
Benoît Villiers ◽  
François Stricher ◽  
Macha Anissimova ◽  
Mélodie Cadillon ◽  
...  

AbstractIsobutene is a high value gaseous alkene used as fuel additive and a chemical building block. As an alternative to fossil fuel derived isobutene, we here develop a modified mevalonate pathway for the production of isobutene from glucose in vivo. The final step in the pathway consists of the decarboxylation of 3-methylcrotonic acid, catalysed by an evolved ferulic acid decarboxylase (Fdc) enzyme. Fdc belongs to the prFMN-dependent UbiD enzyme family that catalyses reversible decarboxylation of (hetero)aromatic acids or acrylic acids with extended conjugation. Following a screen of an Fdc library for inherent 3-methylcrotonic acid decarboxylase activity, directed evolution yields variants with up to an 80-fold increase in activity. Crystal structures of the evolved variants reveal that changes in the substrate binding pocket are responsible for increased selectivity. Solution and computational studies suggest that isobutene cycloelimination is rate limiting and strictly dependent on presence of the 3-methyl group.


2021 ◽  
Author(s):  
Jennifer J Arp ◽  
Shrikaar Kambhampati ◽  
Kevin Chu ◽  
Somnath Koley ◽  
Lauren M Jenkins ◽  
...  

C4 photosynthesis is an adaptive photosynthetic pathway which concentrates CO2 around Rubisco in specialized bundle sheath cells to reduce photorespiration. Historically, the pathway has been characterized into three different subtypes based on the decarboxylase involved, although recent work has provided evidence that some plants can use multiple decarboxylases, with maize in particular using both the NADP-malic enzyme (NADP-ME) pathway and phosphoenolpyruvate carboxykinase (PEPCK) pathway. Parallel C4 pathways could be advantageous in balancing energy and reducing equivalents between bundle sheath and mesophyll cells, in decreasing the size of the metabolite gradients between cells and may better accommodate changing environmental conditions or source to sink demands on growth. The enzyme activity of C4 decarboxylases can fluctuate with different stages of leaf development, but it remains unclear if the pathway flexibility is an innate aspect of leaf development or an adaptation to the leaf microenvironment that is regulated by the plant. In this study, variation in the two C4 pathways in maize were characterized at nine plant ages throughout the life cycle. Two positions in the canopy were examined for variation in physiology, gene expression, metabolite concentration, and enzyme activity, with particular interest in asparagine as a potential regulator of C4 decarboxylase activity. Variation in C4 and C3 metabolism was observed for both leaf age and canopy position, reflecting the ability of C4 pathways to adapt to changing microenvironments.


2021 ◽  
Vol 9 (4) ◽  
pp. 777
Author(s):  
Charikleia Tsanasidou ◽  
Stamatia Asimakoula ◽  
Nikoletta Sameli ◽  
Christos Fanitsios ◽  
Elpiniki Vandera ◽  
...  

Autochthonous single (Ent+) or multiple (m-Ent+) enterocin-producing strains of dairy enterococci show promise for use as bioprotective adjunct cultures in traditional cheese technologies, provided they possess no pathogenic traits. This study evaluated safety, decarboxylase activity, and enzymatic (API ZYM) activity profiles of nine Ent+ or m-Ent+ Greek cheese isolates previously assigned to four distinct E. faecium (represented by the isolates KE64 (entA), GL31 (entA), KE82 (entA-entB-entP) and KE77 (entA-entB-entP-bac31)) and two E. durans (represented by the isolates KE100 (entP) and KE108 (entP-bac31-cyl)) strain genotypes. No strain was β-hemolytic or harbored vanA and vanB or the virulence genes agg, ace, espA, IS16, hyl, or gelE. All strains were of moderate to high sensitivity to ampicillin, ciprofloxacin, chloramphenicol, erythromycin, gentamicin, penicillin, tetracycline, and vancomycin, except for the E. faecium KE64 and KE82 strains, which were resistant to erythromycin and penicillin. All cheese strains showed moderate to strong esterase-lipase and aminopeptidase activities and formed tyramine, but none formed histamine in vitro. In conclusion, all Ent+ or m-Ent+ strain genotypes of the E. faecium/durans group, except for the cyl-positive E. durans KE108, were safe for use as adjunct cultures in traditional Greek cheeses. Further in situ biotechnological evaluations of the strains in real cheese-making trials are required.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Shuaiqi Meng ◽  
Ruipeng An ◽  
Zhongyu Li ◽  
Ulrich Schwaneberg ◽  
Yu Ji ◽  
...  

AbstractAn active site is normally located inside enzymes, hence substrates should go through a tunnel to access the active site. Tunnel engineering is a powerful strategy for refining the catalytic properties of enzymes. Here, P450BsβHI (Q85H/V170I) derived from hydroxylase P450Bsβ from Bacillus subtilis was chosen as the study model, which is reported as a potential decarboxylase. However, this enzyme showed low decarboxylase activity towards long-chain fatty acids. Here, a tunnel engineering campaign was performed for modulating the substrate preference and improving the decarboxylation activity of P450BsβHI. The finally obtained BsβHI-F79A variant had a 15.2-fold improved conversion for palmitic acid; BsβHI-F173V variant had a 3.9-fold improved conversion for pentadecanoic acid. The study demonstrates how the substrate preference can be modulated by tunnel engineering strategy.


Sign in / Sign up

Export Citation Format

Share Document