scholarly journals Survival of recombinant erythropoietin in the circulation: the role of carbohydrates

Blood ◽  
1989 ◽  
Vol 73 (1) ◽  
pp. 84-89
Author(s):  
MN Fukuda ◽  
H Sasaki ◽  
L Lopez ◽  
M Fukuda

Recombinant human erythropoietin produced in transfected Chinese hamster ovary cells is glycosylated much the same way as the erythropoietin present in human urine. To determine the role of carbohydrates in the stability of recombinant human erythropoietin in vivo, [125I]-labeled recombinant erythropoietin was intravenously infused into rats. The erythropoietin was slowly cleared from the blood with a half-life of approximately two hours. Asialoerythropoietin, which was produced by treatment of recombinant human erythropoietin with sialidase, was found to be cleared rapidly from circulation within ten minutes. These data suggest that the galactose binding protein of hepatic cells is involved in the clearance of asialoerythropoietin. Erythropoietin also contains N-glycans with a few N-acetyllactosamine repeats, which can be enriched by tomato lectin affinity chromatography. The lectin-bound fraction was cleared to a larger extent than was the unfractionated erythropoietin, while the component that did not bind the lectin was found to be stable in the circulation. Authentic N-acetyllactosamine repeats (polylactosaminoglycans) prepared from erythrocytes were similarly rapidly cleared from the circulation to the liver, and this clearance was inhibitable with asialo-alpha 1- acid glycoprotein. These results suggest that (a) the sialic acid of the recombinant erythropoietin is necessary for this glycoprotein hormone to circulate stably and (b) glycoproteins with more than three lactosaminyl repeat units may be cleared by the galactose binding protein of hepatocytes.

Blood ◽  
1989 ◽  
Vol 73 (1) ◽  
pp. 84-89 ◽  
Author(s):  
MN Fukuda ◽  
H Sasaki ◽  
L Lopez ◽  
M Fukuda

Abstract Recombinant human erythropoietin produced in transfected Chinese hamster ovary cells is glycosylated much the same way as the erythropoietin present in human urine. To determine the role of carbohydrates in the stability of recombinant human erythropoietin in vivo, [125I]-labeled recombinant erythropoietin was intravenously infused into rats. The erythropoietin was slowly cleared from the blood with a half-life of approximately two hours. Asialoerythropoietin, which was produced by treatment of recombinant human erythropoietin with sialidase, was found to be cleared rapidly from circulation within ten minutes. These data suggest that the galactose binding protein of hepatic cells is involved in the clearance of asialoerythropoietin. Erythropoietin also contains N-glycans with a few N-acetyllactosamine repeats, which can be enriched by tomato lectin affinity chromatography. The lectin-bound fraction was cleared to a larger extent than was the unfractionated erythropoietin, while the component that did not bind the lectin was found to be stable in the circulation. Authentic N-acetyllactosamine repeats (polylactosaminoglycans) prepared from erythrocytes were similarly rapidly cleared from the circulation to the liver, and this clearance was inhibitable with asialo-alpha 1- acid glycoprotein. These results suggest that (a) the sialic acid of the recombinant erythropoietin is necessary for this glycoprotein hormone to circulate stably and (b) glycoproteins with more than three lactosaminyl repeat units may be cleared by the galactose binding protein of hepatocytes.


Blood ◽  
1989 ◽  
Vol 73 (1) ◽  
pp. 90-99 ◽  
Author(s):  
JL Spivak ◽  
BB Hogans

Abstract We compared the in vivo plasma clearance and organ accumulation in anesthetized rats of 125I-labeled, recombinant human erythropoietin and 125I-labeled, desialylated recombinant erythropoietin. The immediate volume of distribution of 125I-labeled, recombinant erythropoietin approximated that of the plasma volume. Its plasma clearance was multiexponential, with an initial rapid distribution phase (t1/2 = 53 minutes) and a slower elimination phase (t1/2 = 180 minutes). Organ accumulation of labeled recombinant erythropoietin, as compared with 125I-labeled human albumin, was negligible until 30 minutes after injection when small amounts appeared in the kidneys and bone marrow. Only 24% of the 125I-labeled, desialylated recombinant erythropoietin was recovered immediately after injection, and 96% of the hormone was cleared from the plasma with a t1/2 of 2.0 minutes. The bulk of the desialylated hormone accumulated in the liver where it was rapidly catabolized and its breakdown products released back into the plasma. Significantly, in contrast to unmodified erythropoietin, there was also early accumulation of desialylated hormone in the kidneys, marrow, and spleen. Desialylated orosomucoid but not orosomucoid, yeast mannan, or dextran sulfate 500 inhibited the rapid plasma clearance and hepatic accumulation of desialylated erythropoietin. Oxidation of the desialylated hormone restored its plasma recovery and clearance to normal but rendered it biologically inactive, and accumulation in organs other than the kidney was negligible.


Blood ◽  
1989 ◽  
Vol 73 (1) ◽  
pp. 90-99
Author(s):  
JL Spivak ◽  
BB Hogans

We compared the in vivo plasma clearance and organ accumulation in anesthetized rats of 125I-labeled, recombinant human erythropoietin and 125I-labeled, desialylated recombinant erythropoietin. The immediate volume of distribution of 125I-labeled, recombinant erythropoietin approximated that of the plasma volume. Its plasma clearance was multiexponential, with an initial rapid distribution phase (t1/2 = 53 minutes) and a slower elimination phase (t1/2 = 180 minutes). Organ accumulation of labeled recombinant erythropoietin, as compared with 125I-labeled human albumin, was negligible until 30 minutes after injection when small amounts appeared in the kidneys and bone marrow. Only 24% of the 125I-labeled, desialylated recombinant erythropoietin was recovered immediately after injection, and 96% of the hormone was cleared from the plasma with a t1/2 of 2.0 minutes. The bulk of the desialylated hormone accumulated in the liver where it was rapidly catabolized and its breakdown products released back into the plasma. Significantly, in contrast to unmodified erythropoietin, there was also early accumulation of desialylated hormone in the kidneys, marrow, and spleen. Desialylated orosomucoid but not orosomucoid, yeast mannan, or dextran sulfate 500 inhibited the rapid plasma clearance and hepatic accumulation of desialylated erythropoietin. Oxidation of the desialylated hormone restored its plasma recovery and clearance to normal but rendered it biologically inactive, and accumulation in organs other than the kidney was negligible.


Biochemistry ◽  
1987 ◽  
Vol 26 (9) ◽  
pp. 2633-2638 ◽  
Author(s):  
Janice M. Davis ◽  
Tsutomu Arakawa ◽  
Thomas W. Strickland ◽  
David A. Yphantis

Sign in / Sign up

Export Citation Format

Share Document