glycoprotein hormone
Recently Published Documents


TOTAL DOCUMENTS

532
(FIVE YEARS 36)

H-INDEX

53
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Bryan Faust ◽  
Isha Singh ◽  
Kaihua Zhang ◽  
Nicholas Hoppe ◽  
Antonio F.M. Pinto ◽  
...  

Thyroid hormones are vital to growth and metabolism. Thyroid hormone synthesis is controlled by thyrotropin (TSH), which acts at the thyrotropin receptor (TSHR). Autoantibodies that activate the TSHR pathologically increase thyroid hormones in Graves' disease. How autoantibodies mimic TSH function remains unclear. We determined cryogenic-electron microscopy structures of active and inactive TSHR. In inactive TSHR, the extracellular domain lies close to the membrane bilayer. TSH selects an upright conformation of the extracellular domain due to steric clashes between a conserved hormone glycan and the membrane bilayer. An activating autoantibody selects a similar upright conformation of the extracellular domain. Conformational changes in the extracellular domain are transduced to the seven transmembrane domain via a conserved hinge domain, a tethered peptide agonist, and a phospholipid that binds within the seven transmembrane domain. Rotation of the TSHR ECD relative to the membrane bilayer is sufficient for receptor activation, revealing a shared mechanism for other glycoprotein hormone receptors that may also extend to G protein-coupled receptors with large extracellular domains.


Peptides ◽  
2021 ◽  
pp. 170710
Author(s):  
Areej N. Al-Dailami ◽  
Jimena Leyria ◽  
Ian Orchard ◽  
Angela B. Lange

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4177-4177
Author(s):  
Daniel Adamkiewicz ◽  
Abhishek A. Mangaonkar ◽  
James Son ◽  
Hongyan Xu ◽  
Leigh Wells ◽  
...  

Abstract Iron (Fe) overload is not rare among sickle cell disease (SCD) patients. It results from either chronic transfusions for primary or secondary stroke prevention, or more commonly sporadic, mostly unnecessary transfusions and are associated with significant morbidity, secondary to hepatic, cardiac and renal Fe deposition. Previous studies at our Center showed that 12% of the adult SCD population had Fe overload, and vast majority of these (80%) resulted from episodic transfusions (Son et al, 2013). Subsequent studies showed that the Fe regulatory peptide, hepcidin was appropriately upregulated in SCD subjects with Fe overload, and the plasma levels of the glycoprotein hormone erythroferrone (ERFE) was not as high as that found in patients with transfusion dependent beta thalassemia (TDT) due to the absence of significant ineffective erythropoiesis in SCD (Thawer et al, 2017, Mangaonkar et al, Brit. J. Haematol, 2020). We report on the utilization and outcomes in Fe overloaded SCD patients who were prescribed the oral chelating agent deferasirox. 22 patients were prescribed deferasirox; median age was 38, 12 female 10 male. 21 had Hb SS, and 1 had s-b 0 thalassemia. Deferasirox dose ranged from 720-2500 mg/day (12 to 28 mg/Kg/day). Nonadherence was ascertained by patients' own admission. Figures 1-3 show the pre and post ferritin levels in subjects who were on deferasirox, and in controls; patients who took deferasirox had a more pronounced decrease in their ferritin (p=.004 vs p=.74). Although hepatic MRI for liver iron content (LIC) was not available on all patients, in those who underwent MRI there was a correlation between LIC and serum ferritin obtained at close temporal proximity (Fig. 4). Most common side effects of deferasirox were gastrointestinal (abdominal pain, nausea, vomiting, diarrhea), which were seen less commonly with the newer oral formulation (Jadenu). Several conclusions can be drawn from our observation on relatively small number of patients: 1) Deferasirox is effective in decreasing Fe overload as shown by serum ferritin levels 2) Second generation of oral deferasirox is better tolerated, and therefore is associated with improved adherence, 3) Documentation of a decrease in LIC with chelation will be important for the reversal of Fe induced organ damage, and 4) Parallel studies of the levels of Fe regulatory peptides hepcidin and erythroferrone (ERFE) will clarify the effect of chelation therapy on biomarkers of Fe metabolism. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Jing Hou ◽  
Jigan Cheng ◽  
ZeHua Dai ◽  
Na Wei ◽  
Huan Chen ◽  
...  

Stanniocalcin-1 (STC1) is a glycoprotein hormone whose abnormal expression has been reported to be associated with a variety of tumors, but its function in breast cancer is not well understood. Through modulation of STC1 expression in different breast cancer cell lines, our study found that STC1 could promote the proliferation and growth of breast cancer cells and promote metastasis. Furthermore, STC1 reduced apoptosis induction by irradiation. We also found that STC1 could promote a homologous recombination-mediated DNA damage repair by recruiting BRCA1 to sites of damage. Moreover, STC1 silencing sensitized breast cancer cells to treatment with irradiation (IR), olaparib, or cisplatin in vitro. In clinical settings, the serum concentration of STC1 was higher in breast cancer patients than in healthy women, as detected by enzyme-linked immunosorbent assay (ELISA). In addition, immunohistochemical staining of breast cancer specimens showed that a high expression of STC1 was negatively correlated with recurrence-free survival in breast cancer, indicating that STC1 expression could be used as a predictive marker for a poor prognosis in breast cancer. All these findings indicate that STC1 promotes breast cancer tumorigenesis and that breast cancers with a high level of STC1 are more resistant to treatment, probably through homologous recombination (HR) promotion. Furthermore, combining STC1 inhibition and DNA damage-inducing drugs may be a novel approach to improve the survival of patients with STC1-expressing breast cancer.


2021 ◽  
Vol 27 ◽  
Author(s):  
Masuma Khatun ◽  
Elina Urpilainen ◽  
Anne Ahtikoski ◽  
Riikka K. Arffman ◽  
Annukka Pasanen ◽  
...  

Stanniocalcin-1 (STC-1) is a glycoprotein hormone involved in diverse biological processes, including regulation of calcium phosphate homeostasis, cell proliferation, apoptosis, inflammation, oxidative stress responses, and cancer development. The role of STC-1 in endometrial cancer (EC) is yet to be elucidated. In this study, we investigated the protein expression pattern of STC-1 in a tissue microarray (TMA) cohort of hysterectomy specimens from 832 patients with EC. We then evaluated the prognostic value of STC-1 expression regarding the clinicopathologic features and patients survival over a period of 140 months. Our results revealed that in EC tissue samples, STC-1 is mainly localized in the endometrial epithelium, although some expression was also observed in the stroma. Decreased STC-1 expression was associated with factors relating to a worse prognosis, such as grade 3 endometrioid tumors (p = 0.030), deep myometrial invasion (p = 0.003), lymphovascular space invasion (p = 0.050), and large tumor size (p = 0.001). Moreover, STC-1 expression was decreased in tumors obtained from obese women (p = 0.014) and in women with diabetes mellitus type 2 (DMT2; p = 0.001). Interestingly, the data also showed an association between DNA mismatch repair (MMR) deficiency and weak STC-1 expression, specifically in the endometrial epithelium (p = 0.048). No association was observed between STC-1 expression and disease-specific survival. As STC-1 expression was particularly low in cases with obesity and DMT2 in the TMA cohort, we also evaluated the correlation between metformin use and STC-1 expression in an additional EC cohort that only included women with DMT2 (n = 111). The analysis showed no difference in STC-1 expression in either the epithelium or the stroma in women undergoing metformin therapy compared to metformin non-users. Overall, our data may suggest a favorable role for STC-1 in EC behavior; however, further studies are required to elucidate the detailed mechanism and possible applications to cancer treatment.


Nature ◽  
2021 ◽  
Author(s):  
Jia Duan ◽  
Peiyu Xu ◽  
Xi Cheng ◽  
Chunyou Mao ◽  
Tristan Croll ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Bruno Querat

The glycoprotein hormones (GPH) are heterodimers composed of a common α subunit and a specific β subunit. They act by activating specific leucine-rich repeat G protein-coupled receptors. However, individual subunits have been shown to elicit responses in cells devoid of the receptor for the dimeric hormones. The α subunit is involved in prolactin production from different tissues. The human chorionic gonadotropin β subunit (βhCG) plays determinant roles in placentation and in cancer development and metastasis. A truncated form of the thyrotropin (TSH) β subunit is also reported to have biological effects. The GPH α- and β subunits are derived from precursor genes (gpa and gpb, respectively), which are expressed in most invertebrate species and are still represented in vertebrates as GPH subunit paralogs (gpa2 and gpb5, respectively). No specific receptor has been found for the vertebrate GPA2 and GPB5 even if their heterodimeric form is able to activate the TSH receptor in mammals. Interestingly, GPA and GPB are phylogenetically and structurally related to cysteine-knot growth factors (CKGF) and particularly to a group of antagonists that act independently on any receptor. This review article summarizes the observed actions of individual GPH subunits and presents the current hypotheses of how these actions might be induced. New approaches are also proposed in light of the evolutionary relatedness with antagonists of the CKGF family of proteins.


2021 ◽  
Vol 22 (18) ◽  
pp. 10110
Author(s):  
Kaiana Recchia ◽  
Amanda Soares Jorge ◽  
Laís Vicari de Figueiredo Pessôa ◽  
Ramon Cesar Botigelli ◽  
Vanessa Cristiane Zugaib ◽  
...  

Follicle stimulating hormone (FSH) is produced by the pituitary gland in a coordinated hypothalamic–pituitary–gonadal (HPG) axis event, plays important roles in reproduction and germ cell development during different phases of reproductive development (fetal, neonatal, puberty, and adult life), and is consequently essential for fertility. FSH is a heterodimeric glycoprotein hormone of two dissociable subunits, α and β. The FSH β-subunit (FSHβ) function starts upon coupling to its specific receptor: follicle-stimulating hormone receptor (FSHR). FSHRs are localized mainly on the surface of target cells on the testis and ovary (granulosa and Sertoli cells) and have recently been found in testicular stem cells and extra-gonadal tissue. Several reproduction disorders are associated with absent or low FSH secretion, with mutation of the FSH β-subunit or the FSH receptor, and/or its signaling pathways. However, the influence of FSH on germ cells is still poorly understood; some studies have suggested that this hormone also plays a determinant role in the self-renewal of germinative cells and acts to increase undifferentiated spermatogonia proliferation. In addition, in vitro, together with other factors, it assists the process of differentiation of primordial germ cells (PGCLCs) into gametes (oocyte-like and SSCLCs). In this review, we describe relevant research on the influence of FSH on spermatogenesis and folliculogenesis, mainly in the germ cell of humans and other species. The possible roles of FSH in germ cell generation in vitro are also presented.


2021 ◽  
Author(s):  
Congcong Wang ◽  
Qin Zhang ◽  
Yang Liu ◽  
Qianghua Xu

Abstract Erythropoietin (EPO) is a glycoprotein hormone involved in proerythropoiesis, antioxidation and antiapoptosis. It also contributes to cellular immune function in high-altitude species, such as the schizothoracine fish Gymnocypris dobula (G. dobula). Six mutation sites previously identified in EPO from G. dobula (GD-EPO) were injected into zebrafish embryos and their effects were compared with EPO from the low-altitude schizothoracine Schizothorax prenanti (S. prenanti). The key mutation site in GD-EPO was identified as H131S. Under hypoxic conditions, the levels of superoxide dismutase and malondialdehyde were decreased, whereas that of nitric oxide was increased in zebrafish injected with GD-EPO compared with those injected with S. prenanti-EPO (SP-EPO). The results suggest that EPO in high-altitude schizothoracine species is both antioxidative and antiapoptotic, driven by the H131S mutation site. Thus, this enhanced the ability of this species to adapt to the high-altitude hypoxic environment. These results provide a basis for investigating further the hypoxia adaptation mechanisms of teleosts.


2021 ◽  
Author(s):  
Jia Duan ◽  
Peiyu Xu ◽  
Xi Cheng ◽  
Chunyou Mao ◽  
Tristan Croll ◽  
...  

Luteinizing hormone (LH) and chorionic gonadotropin (CG) are members of the glycoprotein hormone family essential to human reproduction and are important therapeutic drugs. They activate the same G protein-coupled receptor, LHCGR, by binding to the large extracellular domain (ECD). Here we report four cryo-EM structures of LHCGR, two wildtype receptor structures in the inactive and active states, and two constitutively active mutated receptor structures. The active structures are bound to CG and Gs heterotrimer, with one of the structure also containing the allosteric agonist, Org43553. The structures reveal a distinct ′push and pull′ mechanism of receptor activation, in which the ECD is pushed by the bound hormone and pulled by the extended hinge loop next to the transmembrane domain (TMD). A highly conserved 10-residue fragment (P10) from the hinge C-terminal loop at the ECD-TMD interface functions as a tethered agonist to induce conformational changes in TMD and G-protein coupling. Org43553 binds to a TMD pocket and interacts directly with P10 that further stabilizes the receptor in the active conformation. Together, these structures provide a common model for understanding glycoprotein hormone signal transduction and dysfunction, and inspire the search for clinically suitable small molecular compounds to treat endocrine diseases.


Sign in / Sign up

Export Citation Format

Share Document