Low DLCO, reduced pulmonary blood volume and ventilatory inefficiency in smokers with mild emphysema

Author(s):  
Amany Fathy Elbehairy ◽  
Sandra G. Vincent ◽  
Devin B. Phillips ◽  
Matthew D. James ◽  
Jenna Veugen ◽  
...  
1961 ◽  
Vol 1 (04) ◽  
pp. 353-379
Author(s):  
Jacques Lammerant ◽  
Norman Veall ◽  
Michel De Visscher

Summary1. The technique for the measurement of cardiac output by external recording of the intracardiac flow of 131I labelled human serum albumin has been extended to provide a measure of the mean circulation time from right to left heart and hence a new approach to the estimation of the pulmonary blood volume.2. Values for the basal cardiac output in normal subjects and its variations with age are in good agreement with the previously published data of other workers.3. The pulmonary blood volume in normal man in the basal state was found to be 28.2 ± 0.6% of the total blood volume.4. There was no correlation between cardiac output and pulmonary blood volume in a series of normal subjects in the basal state.5. The increase in cardiac output during digestion was associated with a decrease in pulmonary blood volume equal to 6.3 ± 1.2% of the total blood volume, that is, about 280 ml.6. The increase in cardiac output during exercise was associated with a decrease in pulmonary blood volume equal to 4.5 ± 1.0% of the total blood volume, that is, about 200 ml.7. The increase in cardiac output attributed to alarm is not associated with a decrease in pulmonary blood volume, the latter may in fact be increased.8. The total blood volume is advocated as a standard of reference for studies of this type in normal subjects in preference to body weight or surface area.9. The significance of these results and the validity of the method are discussed.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
L Houard ◽  
H Langet ◽  
S Militaru ◽  
M F Rousseau ◽  
A C Pouleur ◽  
...  

Abstract Background Assessment of congestion and cardiac function has been shown to have both therapeutic and prognostic implication for the management of patient with CHF. Pulmonary transit time (PTT) assessed by cMR is a novel parameter, which reflects not only hemodynamic congestion but also LV and RV function. Purpose We sought to explore the prognostic value of the pulmonary transit time assessed in seconds (PTT) and in beats (PTB) and the pulmonary blood volume indexed (PBVi) above conventional well-known risk factors including cMR-RVEF and estimated pulmonary artery pressure (eSPAP) in predicting outcomes. PBVi is defined by the product of PTB and the stroke volume indexed to body surface area. Methods 401 patients in sinus rhythm with a LVEF <35% (age 61±13 years; 25% female) underwent a cMR and an echocardiography. Patients were followed for a primary endpoint of overall mortality. Results Average cMR-LVEF was 23±7%, cMR-RVEF was 43±15%, average estimated systolic pulmonary pressure (eSPAP) was 33±12mmH, average PTT was 11±6s, PTB 8.9±5.6 bpm and average PBVi 305.5±254.9ml/m2. After a median follow-up of 6 years, 182 reached the primary endpoint. In univariate cox regression, age, ischemic cardiomyopathy, hypertension, diabetes, NYHA class III-IV, eSPAP >40mmHg, E/A ratio, e/e'ratio, cMR-RVEF, LV scar, PTT, PTB, PBVi, GFR, beta blockers and diuretics were associated with overall mortality. For the multivariate analysis, a baseline model was created where age, ischemic etiology, NYHA functional class III-IV, eSPAP >40 mmHg, beta-blockers and cMR-RVEF were found to be significantly and independently associated with the primary endpoint. PTT (X2 to improve = 5.3, HR: 1.03; 95% CI: [1.01; 1.06]; P=0.015), PTB (X2 to improve = 11.8, HR: 1.06; 95% CI: [1.03; 1.09]; P<0.001) and PBVi (X2 to improve = 7.7, HR: 1.08; 95% CI: [1.03; 1.14]; P=0.002) showed a significantly additional prognostic value over the baseline model (p<0.001). Conclusion Pulmonary transit time and pulmonary blood volume provide higher prognostic information over well-known risk factors including cMR-RVEF and eSPAP with high power to stratify prognosis in HF-rEF and might be promising tools to identify patients at higher risk among HF patients. Acknowledgement/Funding Fond National de recherche scientifique (FNRS)


Author(s):  
Luis E. Okamoto ◽  
William D. Dupont ◽  
Italo Biaggioni ◽  
Marvin W. Kronenberg ◽  
Amy K. Wright

1974 ◽  
Vol 8 (1) ◽  
pp. 112-119 ◽  
Author(s):  
A. LOCKHART ◽  
J. M. VALLOIS ◽  
J. MENSCH-DECHENE ◽  
J. POLIANSKI ◽  
M. ZELTER ◽  
...  

1985 ◽  
Vol 49 (5) ◽  
pp. 475-486 ◽  
Author(s):  
MICHIO ARAKAWA ◽  
YO YASUDA ◽  
KENJIRO KAMBARA ◽  
JUMPEI IINUMA ◽  
HIDETAKA MIYAZAKI ◽  
...  

1972 ◽  
Vol 32 (3) ◽  
pp. 391-396 ◽  
Author(s):  
R. N. Pierson ◽  
M. H. Grieco

Sign in / Sign up

Export Citation Format

Share Document