mean circulation
Recently Published Documents


TOTAL DOCUMENTS

282
(FIVE YEARS 35)

H-INDEX

47
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Radek Zajíček ◽  
Petr Pišoft ◽  
Roland Eichinger ◽  
Petr Šácha

<p>The meridional overturning mass circulation in the middle atmosphere, i.e. the Brewer-Dobson circulation (BDC), was first discovered before decades based on the distribution of trace gases and a basic analytical concept of BDC has been derived using the transformed Eulerian mean equations. Since then, BDC is usually defined as consisting of a diffusive part, and an advective, residual mean circulation. In the vertical, BDC is separated into two branches – a shallow branch in the lower stratosphere and a deep branch higher in the middle atmosphere.<br />Climate model simulations robustly show that the advective BDC part accelerates in connection to the greenhouse gas-induced climate change and this acceleration dominates the middle atmospheric changes in climate model projections. A prominent quantity that is being studied as a proxy for advective BDC changes is the net tropical upwelling across the tropopause, which measures the amount of mass advected by residual circulation from the troposphere to the stratosphere per unit of time. The upper BDC branch received considerably less research attention than its shallow part, but features some striking phenomenon in the terrestrial atmosphere. It couples the stratosphere and mesosphere and is also responsible for a large portion of interhemispheric transport and coupling in the middle atmosphere.<br />In our research, for the first time, we produce a conceptual study of the advective stratosphere-mesosphere exchange. The analysis of advective exchange of mass between the stratosphere and mesosphere, i.e. the advective mass transport across the stratopause represents another step towards a better understanding of the structure of the upper BDC part and at the same time provides valuable insights into the relatively little-explored stratopause region. We investigate the variability and trends in mass fluxes from the stratosphere to the mesosphere and vice versa based on data from the EMAC-L90 model CCMI-1 simulation for the period 1960-2100. We develop an analytical method that allows us to attribute the changes of transport to causative factors such as acceleration of residual circulation, variable height of the stratopause, change of a geometric shape of the stratopause and changes in width of the upwelling and downwelling regions. The main driver of the increasing mass exchange between the stratosphere and the mesosphere is the faster circulation, however, the other terms are not negligible. The derived methodology offers the possibility of using an analogous procedure also for the tropopause in the future.</p>


2021 ◽  
pp. 58-1
Author(s):  
Antoine Hochet ◽  
Thierry Huck ◽  
Olivier Arzel ◽  
Florian Sévellec ◽  
Alain Colin de Verdiére

AbstractOne of the proposed mechanisms to explain the multidecadal variability observed in sea surface temperature of the North Atlantic consists of a large-scale low-frequency internal mode spontaneously developing because of the large-scale baroclinic instability of the time-mean circulation. Even though this mode has been extensively studied in terms of the buoyancy variance budget, its energetic properties remain poorly known. Here we perform the full mechanical energy budget including available potential energy (APE) and kinetic energy (KE) of this internal mode and decompose the budget into three frequency bands: mean, low frequency (LF) associated with the large-scale mode and high frequency (HF) associated with mesocale eddy turbulence. This decomposition allows us to diagnose the energy fluxes between the different reservoirs and to understand the sources and sinks. Due to the large-scale of the mode, most of its energy is contained in the APE. In our configuration, the only source of LF APE is the transfer from mean APE to LF APE that is attributed to the large-scale baroclinic instability. In return the sinks of LF APE are the parameterized diffusion, the flux toward HF APE and to a much lesser extent toward LF KE. The presence of an additional wind-stress component weakens multidecadal oscillations and modifies the energy fluxes between the different energy reservoirs. The KE transfer appears to only have a minor influence on the multidecadal mode compared to the other energy sources involving APE, in all experiments. These results highlight the utility of the full APE/ KE budget.


2021 ◽  

Abstract The full text of this preprint has been withdrawn by the authors due to author disagreement with the posting of the preprint. Therefore, the authors do not wish this work to be cited as a reference. Questions should be directed to the corresponding author.


2021 ◽  
Author(s):  
Matic Pikovnik ◽  
Žiga Zaplotnik ◽  
Lina Boljka ◽  
Nedjeljka Žagar

Abstract. This study compares the trends of Hadley cell (HC) strength using different HC measures applied to the ECMWF ERA5 and ERA-Interim reanalyses in the period 1979–2018. The HC strength is commonly evaluated by indices derived from the mass-weighted zonal-mean stream function. Other measures include the velocity potential and the vertical velocity. Six known measures of the HC strength are complemented by a measure of the average HC strength, obtained by averaging the stream function in the latitude-pressure (φ-p) plane, and by the total energy of unbalanced zonal-mean circulation in the normal-mode function decomposition. It is shown that measures of the HC strength, which rely on point values in the φ-p plane, produce unreliable long-term trends of both the northern and southern HCs, especially in ERA-Interim; magnitudes and even the signs of trends depend on the choice of HC strength measure. The two new measures alleviate the vertical and meridional inhomogeneities of the trends in the HC strength. In both reanalyses, there is a positive trend in the total energy of zonal-mean unbalanced circulation. The average HC strength measure also shows a positive trend in ERA5 in both hemispheres, while the trend in ERA-Interim is insignificant.


2021 ◽  
Author(s):  
Isabel Vigo ◽  
Ferdous Zid ◽  
David García

In this work, we provide an updated geodetic approach to the Mediterranean Surface Geostrophic circulation based onsatellite data. We follow same methodology as in a previous approach by Vigo et al. (2018), but here both the Sea SurfaceHeight (SSH) and the Geoid (N) have been updated by enhanced solutions, and the time period covered has beenextended to 23 years, from 1993 to 2015. The main general pattern of circulation is confirmed with respect to previousapproach, but the new estimation provides enhanced resolution of the details, and higher variations in the climatology.When compare both satellite data-based approaches to the Mediterranean Surface Geostrophic Circulation (SGC) withMercator model simulations that assimilates in-situ measurements, our new estimate shows clearly better agreement thanthe earlier approach. The mean circulation for the studied period, and the climatology of the SGC for the MediterraneanSea are presented in the context of previous literature.


2021 ◽  
Vol 9 (4) ◽  
pp. 359
Author(s):  
Marc de Vos ◽  
Marcello Vichi ◽  
Christo Rautenbach

A coupled numerical hydrodynamic model is presented for the Cape Peninsula region of South Africa. The model is intended to support a range of interdisciplinary coastal management and research applications, given the multifaceted socio-economic and ecological value of the study area. Calibration and validation are presented, with the model reproducing the mean circulation well. Maximum differences between modelled and measured mean surface current speeds and directions of 3.9 × 10−2 m s−1 and 20.7°, respectively, were produced near Cape Town, where current velocities are moderate. At other measurement sites, the model closely reproduces mean surface and near-bed current speeds and directions and outperforms a global model. In simulating sub-daily velocity variability, the model’s skill is moderate, and similar to that of a global model, where comparison is possible. It offers the distinct advantage of producing information where the global model cannot, however. Validation for temperature and salinity is provided, indicating promising performance. The model produces a range of expected dynamical features for the domain including upwelling and vertical current shear. Nuances in circulation patterns are revealed; specifically, the development of rotational flow patterns within False Bay is qualified and an eddy in Table Bay is identified.


2021 ◽  
Author(s):  
Xinquan Zhou ◽  
Stéphanie Duchamp-Alphonse ◽  
Masa Kageyama ◽  
Franck Bassinot ◽  
Xiaoxu Shi ◽  
...  

<p>Today, precipitation and wind patterns over the equatorial Indian Ocean and surrounding lands are paced by monsoon and Walker circulations that are controlled by the seasonal land-sea temperature contrast and the inter-annual convection over the Indo-Pacific Warm Pool, respectively. The annual mean surface westerly winds are particularly tied to the Walker circulation, showing interannual variability coupled with the gradient of Sea Surface Temperature (SST) anomaly between the tropical western and southeastern Indian Ocean, namely, the Indian Ocean Dipole (IOD). While the Indian monsoon pattern has been widely studied in the past, few works deal with the evolution of Walker circulation despite its crucial impacts on modern and future tropical climate systems. Here, we reconstruct the long-term westerly (summer) and easterly (winter) wind dynamics of the equatorial Indian Ocean (10°S−10°N), since the Last Glacial Maximum (LGM) based on i) primary productivity (PP) records derived from coccolith analyses of sedimentary cores MD77-191 and BAR94-24, retrieved off the southern tip of India and off the northwestern tip of Sumatra, respectively and ii) the calculation of a sea surface temperature (SST) anomaly gradient off (south) western Sumatra based on published SST data. We compare these reconstructions with atmospheric circulation simulations obtained with the general coupled model AWI-ESM-1-1-LR (Alfred Wegener Institute Earth System Model).</p><p>Our results show that the Indian Ocean Walker circulation was weaker during the LGM and the early/middle Holocene than present. Model simulations suggest that this is due to anomalous easterlies over the eastern Indian Ocean. The LGM mean circulation state may have been comparable to the year 1997 with a positive IOD, when anomalously strong equatorial easterlies prevailed in winter. The early/mid Holocene mean circulation state may have been equivalent to the year 2006 with a positive IOD, when anomalously strong southeasterlies prevailed over Java-Sumatra in summer. The deglaciation can be seen as a transient period between these two positive IOD-like mean states.</p>


2021 ◽  
Author(s):  
Rahan Ozturk ◽  
Deniz Demirhan ◽  
Yurdanur Unal ◽  
Sema Topcu

<p>Stratospheric zonal winds are disturbed by tropospheric forced planetary waves which modulate the quasi-biennial oscillation (QBO) in the northern hemisphere during winter. QBO is the quasi periodic oscillation of zonal winds in the lower stratosphere with an average recurrence of 28 months. QBO is mainly characterized by zonal mean circulation in the equatorial and low latitudes of middle atmosphere. Investigations indicate that although QBO is an equatorial oscillation there is a strong correlation between QBO and stratospheric polar wind patterns. Additionally, westerly and easterly phases of QBO alter the strength of these winds differently. During the westerly phase of QBO, northern stratospheric zonal winds are stronger whereas the easterly phase coincides with the weaker stratospheric zonal winds.</p><p>In this study, easterly and westerly zonal winds at 30hPa for the latitudes between 5°S and 5°N which characterize the westerly (QBO-W) and easterly (QBO-E) phases of the QBO is examined using CMIP5 MPI-ESM-MR RCP4.5 scenario for the years between 2006 and 2099 for winter. It is found that climatic changes in the zonally asymmetric zonal wind characteristics in both phases of QBO modulates the polar stratospheric zonal winds differently. A prominent wave-1 structure in QBO-E phase and a wave-2 structure in QBO-W phase are apparent and effect the strength of the polar stratospheric zonal winds.</p><p>This study is a supported by TUBİTAK (The Scientific and Technology Research Council of Turkey), The Scientific and Technological Research Projects Funding Program, 1001.The project number is 117Y327.</p><p> </p><p> </p>


2021 ◽  
Author(s):  
Kedeng Zhang ◽  
Hui Wang ◽  
Wenbin Wang ◽  
Jing Liu ◽  
Jie Gao

Abstract By using the coupled magnetosphere-thermosphere-ionosphere model, we explore the longitudinal/UT dependences of the dayside neutral wind in response to the 60 min periodic oscillation of the interplanetary magnetic field (IMF) Bz. The southward propagation of the traveling atmospheric disturbances (TADs) in meridional wind stands at about 20º MLat, which is related to the geomagnetic field configuration, neutral temperature, and electron density changes. The meridional wind travels continuously from high to low latitude in the western southern hemisphere, with several sudden changes in the wave phase along the propagation direction. The broken mean circulation that is induced by the interaction between TADs and simultaneous responses of the meridional winds driven by oscillating solar wind conditions is induced by the stronger roles of the ion drag than the pressure gradient. Note here that the mean circulation is the background meridional winds in the base case with the IMF Bz setting to zero in the CMIT model. The ion drag shows obvious longitudinal differences associated with the penetration of the ionospheric electric field during the oscillation of IMF Bz.


Author(s):  
Audrey Delpech ◽  
Claire Ménesguen ◽  
Yves Morel ◽  
Leif Thomas ◽  
Frédéric Marin ◽  
...  

AbstractAt low latitudes in the ocean, the deep currents are shaped into narrow jets flowing eastward and westward, reversing periodically with latitude between 15°S and 15°N. These jets are present from the thermocline to the bottom. The energy sources and the physical mechanisms responsible for their formation are still debated and poorly understood. This study explores the role of the destabilization of intra-annual equatorial waves in the jets formation process, as these waves are known to be an important energy source at low latitudes. The study focuses particularly on the role of barotropic Rossby waves as a first step towards understanding the relevant physical mechanisms. It is shown from a set of idealized numerical simulations and analytical solutions that Non-Linear Triad Interactions (NLTI) play a crucial role in the transfer of energy towards jet-like structures (long waves with short meridional wavelengths) that induce a zonal residual mean circulation. The sensitivity of the instability emergence and the scale selection of the jet-like secondary wave to the forced primary wave is analyzed. For realistic amplitudes around 5-20 cm s−1, the primary waves that produce the most realistic jet-like structures are zonally-propagating intra-annual waves with periods between 60 and 130 days and wavelengths between 200 and 300 km. The NLTI mechanism is a first step towards the generation of a permanent jet-structured circulation, and is discussed in the context of turbulent cascade theories.


Sign in / Sign up

Export Citation Format

Share Document