scholarly journals On the rate of convergence in limit theorems for random sums via Trotter-distance

2013 ◽  
Vol 2013 (1) ◽  
Author(s):  
Tran Loc Hung ◽  
Tran Thien Thanh
Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 880
Author(s):  
Igoris Belovas

In this research, we continue studying limit theorems for combinatorial numbers satisfying a class of triangular arrays. Using the general results of Hwang and Bender, we obtain a constructive proof of the central limit theorem, specifying the rate of convergence to the limiting (normal) distribution, as well as a new proof of the local limit theorem for the numbers of the tribonacci triangle.


2020 ◽  
pp. 93-152
Author(s):  
Boris V. Gnedenko ◽  
Victor Yu. Korolev

2020 ◽  
Vol 24 ◽  
pp. 315-340
Author(s):  
Andriy Olenko ◽  
Volodymyr Vaskovych

This paper derives non-central asymptotic results for non-linear integral functionals of homogeneous isotropic Gaussian random fields defined on hypersurfaces in ℝd. We obtain the rate of convergence for these functionals. The results extend recent findings for solid figures. We apply the obtained results to the case of sojourn measures and demonstrate different limit situations.


1979 ◽  
Vol 16 (2) ◽  
pp. 428-432 ◽  
Author(s):  
T. C. Brown ◽  
B. W. Silverman

Poisson limit theorems for U-statistics are studied. A general rate of convergence is obtained; this rate is improved for the special case where the U-statistic arises from the consideration of distances between uniformly distributed points in a well-behaved plane region.


Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1918
Author(s):  
Victor Korolev

In the paper, a survey of the main results concerning univariate and multivariate exponential power (EP) distributions is given, with main attention paid to mixture representations of these laws. The properties of mixing distributions are considered and some asymptotic results based on mixture representations for EP and related distributions are proved. Unlike the conventional analytical approach, here the presentation follows the lines of a kind of arithmetical approach in the space of random variables or vectors. Here the operation of scale mixing in the space of distributions is replaced with the operation of multiplication in the space of random vectors/variables under the assumption that the multipliers are independent. By doing so, the reasoning becomes much simpler, the proofs become shorter and some general features of the distributions under consideration become more vivid. The first part of the paper concerns the univariate case. Some known results are discussed and simple alternative proofs for some of them are presented as well as several new results concerning both EP distributions and some related topics including an extension of Gleser’s theorem on representability of the gamma distribution as a mixture of exponential laws and limit theorems on convergence of the distributions of maximum and minimum random sums to one-sided EP distributions and convergence of the distributions of extreme order statistics in samples with random sizes to the one-sided EP and gamma distributions. The results obtained here open the way to deal with natural multivariate analogs of EP distributions. In the second part of the paper, we discuss the conventionally defined multivariate EP distributions and introduce the notion of projective EP (PEP) distributions. The properties of multivariate EP and PEP distributions are considered as well as limit theorems establishing the conditions for the convergence of multivariate statistics constructed from samples with random sizes (including random sums of random vectors) to multivariate elliptically contoured EP and projective EP laws. The results obtained here give additional theoretical grounds for the applicability of EP and PEP distributions as asymptotic approximations for the statistical regularities observed in data in many fields.


Sign in / Sign up

Export Citation Format

Share Document