space of distributions
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 8)

H-INDEX

7
(FIVE YEARS 1)

Author(s):  
Zhongmin Qian ◽  
Yuhan Yao

AbstractWe study a class of McKean–Vlasov type stochastic differential equations (SDEs) which arise from the random vortex dynamics and other physics models. By introducing a new approach we resolve the existence and uniqueness of both the weak and strong solutions for the McKean–Vlasov stochastic differential equations whose coefficients are defined in terms of singular integral kernels such as the Biot–Savart kernel. These SDEs which involve the distributions of solutions are in general not Lipschitz continuous with respect to the usual distances on the space of distributions such as the Wasserstein distance. Therefore there is an obstacle in adapting the ordinary SDE method for the study of this class of SDEs, and the conventional methods seem not appropriate for dealing with such distributional SDEs which appear in applications such as fluid mechanics.


Author(s):  
Joachim Toft ◽  
Anupam Gumber ◽  
Ramesh Manna ◽  
P. K. Ratnakumar

AbstractLet $$\mathcal H$$ H be a Hilbert space of distributions on $$\mathbf{R}^{d}$$ R d which contains at least one non-zero element of the Feichtinger algebra $$S_0$$ S 0 and is continuously embedded in $$\mathscr {D}'$$ D ′ . If $$\mathcal H$$ H is translation and modulation invariant, also in the sense of its norm, then we prove that $$\mathcal H= L^2$$ H = L 2 , with the same norm apart from a multiplicative constant.


Metrika ◽  
2021 ◽  
Author(s):  
Aleksandr Beknazaryan ◽  
Peter Adamic

AbstractWe factorize probability mass functions of discrete distributions belonging to Panjer’s family and to its certain extensions to define a stochastic order on the space of distributions supported on $${\mathbb {N}}_0$$ N 0 . Main properties of this order are presented. Comparison of some well-known distributions with respect to this order allows to generate new families of distributions that satisfy various recurrrence relations. The recursion formula for the probabilities of corresponding compound distributions for one such family is derived. Applications to various domains of reliability theory are provided.


Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1918
Author(s):  
Victor Korolev

In the paper, a survey of the main results concerning univariate and multivariate exponential power (EP) distributions is given, with main attention paid to mixture representations of these laws. The properties of mixing distributions are considered and some asymptotic results based on mixture representations for EP and related distributions are proved. Unlike the conventional analytical approach, here the presentation follows the lines of a kind of arithmetical approach in the space of random variables or vectors. Here the operation of scale mixing in the space of distributions is replaced with the operation of multiplication in the space of random vectors/variables under the assumption that the multipliers are independent. By doing so, the reasoning becomes much simpler, the proofs become shorter and some general features of the distributions under consideration become more vivid. The first part of the paper concerns the univariate case. Some known results are discussed and simple alternative proofs for some of them are presented as well as several new results concerning both EP distributions and some related topics including an extension of Gleser’s theorem on representability of the gamma distribution as a mixture of exponential laws and limit theorems on convergence of the distributions of maximum and minimum random sums to one-sided EP distributions and convergence of the distributions of extreme order statistics in samples with random sizes to the one-sided EP and gamma distributions. The results obtained here open the way to deal with natural multivariate analogs of EP distributions. In the second part of the paper, we discuss the conventionally defined multivariate EP distributions and introduce the notion of projective EP (PEP) distributions. The properties of multivariate EP and PEP distributions are considered as well as limit theorems establishing the conditions for the convergence of multivariate statistics constructed from samples with random sizes (including random sums of random vectors) to multivariate elliptically contoured EP and projective EP laws. The results obtained here give additional theoretical grounds for the applicability of EP and PEP distributions as asymptotic approximations for the statistical regularities observed in data in many fields.


2019 ◽  
Vol 65 (3) ◽  
pp. 339-389
Author(s):  
A B Antonevich ◽  
T G Shagova

In this paper, we discuss methods and approaches for definition of multiplication of distributions, which is not defined in general in the classical theory. We show that this problem is related to the fact that the operator of multiplication by a smooth function is nonclosable in the space of distributions. We give the general method of construction of new objects called new distributions, or mnemofunctions, that preserve essential properties of usual distributions and produce algebras as well. We describe various methods of embedding of distribution spaces into algebras of mnemofunctions. All ideas and considerations are illustrated by the simplest example of the distribution space on a circle. Some effects arising in study of equations with distributions as coefficients are demonstrated by example of a linear first-order differential equation.


Author(s):  
T. R. Shahava

Mnemofunctions of the form f(x/ε), where f is the proper rational function without singularities on the real line, are considered in this article. Such mnemofunctions are called automodeling rational mnemofunctions. They possess the following fine properties: asymptotic expansions in the space of distributions can be written in explicit form and the asymptotic expansion of the product of such mnemofunctions is uniquely determined by the expansions of multiplicands.Partial fraction decomposition of automodeling rational mnemofunctions generates the so-called sloped analytical representation of a distribution, i.e. the representation of a distribution by a jump of the boundary values of the functions analytical in upper and lower half-planes. Sloped analytical representation is similar to the classical Cauchy analytical representation, but its structure is more complicated. The multiplication rule of such representations is described in this article.


Entropy ◽  
2019 ◽  
Vol 21 (9) ◽  
pp. 890 ◽  
Author(s):  
Themis Matsoukas

Statistical thermodynamics has a universal appeal that extends beyond molecular systems, and yet, as its tools are being transplanted to fields outside physics, the fundamental question, what is thermodynamics, has remained unanswered. We answer this question here. Generalized statistical thermodynamics is a variational calculus of probability distributions. It is independent of physical hypotheses but provides the means to incorporate our knowledge, assumptions and physical models about a stochastic processes that gives rise to the probability in question. We derive the familiar calculus of thermodynamics via a probabilistic argument that makes no reference to physics. At the heart of the theory is a space of distributions and a special functional that assigns probabilities to this space. The maximization of this functional generates the mathematical network of thermodynamic relationship. We obtain statistical mechanics as a special case and make contact with Information Theory and Bayesian inference.


2019 ◽  
Vol 150 (6) ◽  
pp. 2757-2775 ◽  
Author(s):  
C. O. R. Sarrico ◽  
A. Paiva

AbstractThe present paper concerns the system ut + [ϕ(u)]x = 0, vt + [ψ(u)v]x = 0 having distributions as initial conditions. Under certain conditions, and supposing ϕ, ψ: ℝ → ℝ functions, we explicitly solve this Cauchy problem within a convenient space of distributions u,v. For this purpose, a consistent extension of the classical solution concept defined in the setting of a distributional product (not constructed by approximation processes) is used. Shock waves, δ-shock waves, and also waves defined by distributions that are not measures are presented explicitly as examples. This study is carried out without assuming classical results about conservation laws. For reader's convenience, a brief survey of the distributional product is also included.


2018 ◽  
Vol 2020 (23) ◽  
pp. 9011-9074 ◽  
Author(s):  
Omegar Calvo-Andrade ◽  
Maurício Corrêa ◽  
Marcos Jardim

Abstract We study codimension one holomorphic distributions on the projective three-space, analyzing the properties of their singular schemes and tangent sheaves. In particular, we provide a classification of codimension one distributions of degree at most 2 with locally free tangent sheaves and show that codimension one distributions of arbitrary degree with only isolated singularities have stable tangent sheaves. Furthermore, we describe the moduli space of distributions in terms of Grothendieck’s Quot-scheme for the tangent bundle. In certain cases, we show that the moduli space of codimension one distributions on the projective space is an irreducible, nonsingular quasi-projective variety. Finally, we prove that every rational foliation and certain logarithmic foliations have stable tangent sheaves.


Sign in / Sign up

Export Citation Format

Share Document