scholarly journals New exponential stability criteria for neutral system with time-varying delay and nonlinear perturbations

2014 ◽  
Vol 2014 (1) ◽  
Author(s):  
Yuechao Ma ◽  
Lihong Zhu
2015 ◽  
Vol 08 (03) ◽  
pp. 1550061
Author(s):  
Pornthip Somchai ◽  
Kanit Mukdasai

In this paper, we investigate the problem of robust exponential stability analysis for uncertain linear systems with discrete interval time-varying delay, distributed time-varying delay and nonlinear perturbations. Based on constructing an augmented Lyapunov–Krasovskii functional with some parameter, decomposition technique of coefficient matrix, mixed model transformation with Leibniz–Newton formula and utilization of zero equations, new delay-range-dependent robust exponential stability criteria are derived in terms of linear matrix inequalities (LMIs). Numerical examples are given to show the superiority of our results to those in the literature.


2011 ◽  
Vol 2011 ◽  
pp. 1-20 ◽  
Author(s):  
W. Weera ◽  
P. Niamsup

We study the robust stability criteria for uncertain neutral systems with interval time-varying delays and time-varying nonlinear perturbations simultaneously. The constraint on the derivative of the time-varying delay is not required, which allows the time-delay to be a fast time-varying function. Based on the Lyapunov-Krasovskii theory, we derive new delay-dependent stability conditions in terms of linear matrix inequalities (LMIs) which can be solved by various available algorithms. Numerical examples are given to demonstrate that the derived conditions are much less conservative than those given in the literature.


2013 ◽  
Vol 284-287 ◽  
pp. 2305-2309
Author(s):  
Jenq Der Chen ◽  
Ruey Shin Chen ◽  
Chin Tan Lee ◽  
Chien Lu

In this paper, the robust exponential stability problem is investigated for a class of neutral systems with interval time-varying delay and nonlinear perturbations. Based on the Lyapunov-Krasovskii functionals in conjunction with Leibniz-Newton formula, novel LMI-based delay-dependent and delay-independent criteria are proposed to guarantee the robust exponential stability with a convergence rate for our considered systems. Finally, numerical examples are illustrated to show the improved results from using the proposed method.


Sign in / Sign up

Export Citation Format

Share Document