scholarly journals Existence of solutions for a class of degenerate quasilinear elliptic equation in RN with vanishing potentials

2013 ◽  
Vol 2013 (1) ◽  
pp. 92 ◽  
Author(s):  
Waldemar D Bastos ◽  
Olimpio H Miyagaki ◽  
Rônei S Vieira
2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Marino Badiale ◽  
Michela Guida ◽  
Sergio Rolando

<p style='text-indent:20px;'>In this paper we continue the work that we began in [<xref ref-type="bibr" rid="b6">6</xref>]. Given <inline-formula><tex-math id="M1">\begin{document}$ 1&lt;p&lt;N $\end{document}</tex-math></inline-formula>, two measurable functions <inline-formula><tex-math id="M2">\begin{document}$ V\left(r \right)\geq 0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M3">\begin{document}$ K\left(r\right)&gt; 0 $\end{document}</tex-math></inline-formula>, and a continuous function <inline-formula><tex-math id="M4">\begin{document}$ A(r) &gt;0 $\end{document}</tex-math></inline-formula> (<inline-formula><tex-math id="M5">\begin{document}$ r&gt;0 $\end{document}</tex-math></inline-formula>), we consider the quasilinear elliptic equation</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ -\mathrm{div}\left(A(|x| )|\nabla u|^{p-2} \nabla u\right) +V\left( \left| x\right| \right) |u|^{p-2}u = K(|x|) f(u) \quad \text{in }\mathbb{R}^{N}, $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where all the potentials <inline-formula><tex-math id="M6">\begin{document}$ A,V,K $\end{document}</tex-math></inline-formula> may be singular or vanishing, at the origin or at infinity. We find existence of nonnegative solutions by the application of variational methods, for which we need to study the compactness of the embedding of a suitable function space <inline-formula><tex-math id="M7">\begin{document}$ X $\end{document}</tex-math></inline-formula> into the sum of Lebesgue spaces <inline-formula><tex-math id="M8">\begin{document}$ L_{K}^{q_{1}}+L_{K}^{q_{2}} $\end{document}</tex-math></inline-formula>. The nonlinearity has a double-power super <inline-formula><tex-math id="M9">\begin{document}$ p $\end{document}</tex-math></inline-formula>-linear behavior, as <inline-formula><tex-math id="M10">\begin{document}$ f(t) = \min \left\{ t^{q_1 -1}, t^{q_2 -1} \right\} $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M11">\begin{document}$ q_1,q_2&gt;p $\end{document}</tex-math></inline-formula> (recovering the power case if <inline-formula><tex-math id="M12">\begin{document}$ q_1 = q_2 $\end{document}</tex-math></inline-formula>). With respect to [<xref ref-type="bibr" rid="b6">6</xref>], in the present paper we assume some more hypotheses on <inline-formula><tex-math id="M13">\begin{document}$ V $\end{document}</tex-math></inline-formula>, and we are able to enlarge the set of values <inline-formula><tex-math id="M14">\begin{document}$ q_1 , q_2 $\end{document}</tex-math></inline-formula> for which we get existence results.</p>


2005 ◽  
Vol 2005 (18) ◽  
pp. 2871-2882 ◽  
Author(s):  
Marilena N. Poulou ◽  
Nikolaos M. Stavrakakis

We prove the existence of a simple, isolated, positive principal eigenvalue for the quasilinear elliptic equation−Δpu=λg(x)|u|p−2u,x∈ℝN,lim|x|→+∞u(x)=0, whereΔpu=div(|∇u|p−2∇u)is thep-Laplacian operator and the weight functiong(x), being bounded, changes sign and is negative and away from zero at infinity.


2003 ◽  
Vol 3 (4) ◽  
Author(s):  
Beatrice Acciaio ◽  
Patrizia Pucci

AbstractWe prove the existence of radial solutions of the quasilinear elliptic equation div(A(|Du|)Du) + f(u) = 0 in ℝ


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Xuexin Li ◽  
Yong Wang ◽  
Yuming Xing

This paper obtains the Lipschitz and BMO norm estimates for the composite operator𝕄s∘Papplied to differential forms. Here,𝕄sis the Hardy-Littlewood maximal operator, andPis the potential operator. As applications, we obtain the norm estimates for the Jacobian subdeterminant and the generalized solution of the quasilinear elliptic equation.


2001 ◽  
Vol 64 (1) ◽  
pp. 149-156 ◽  
Author(s):  
Pietro Zamboni

Dedicated to Filippo ChiarenzaThe aim of this note is to prove the unique continuation property for non-negative solutions of the quasilinear elliptic equation We allow the coefficients to belong to a generalized Kato class.


Sign in / Sign up

Export Citation Format

Share Document