scholarly journals Tumor-induced loss of mural Connexin 43 gap junction activity promotes endothelial proliferation

BMC Cancer ◽  
2015 ◽  
Vol 15 (1) ◽  
Author(s):  
Mayur Choudhary ◽  
Christine Naczki ◽  
Wenhong Chen ◽  
Keith D. Barlow ◽  
L. Douglas Case ◽  
...  
1998 ◽  
Vol 273 (35) ◽  
pp. 22856
Author(s):  
Toshihiko Toyofuku ◽  
Masanori Yabuki ◽  
Kinya Otsu ◽  
Tsunehiko Kuzuya ◽  
Masatsugu Hori ◽  
...  

1992 ◽  
Vol 33 (1) ◽  
pp. 27-38 ◽  
Author(s):  
E. M. Hendrix ◽  
S. J. T. Mao ◽  
W. Everson ◽  
W. J. Larsen

2018 ◽  
Vol 119 (1) ◽  
pp. 305-311 ◽  
Author(s):  
Wei Chen ◽  
Yijun Guo ◽  
Wenjin Yang ◽  
Lei Chen ◽  
Dabin Ren ◽  
...  

Traumatic brain injury (TBI) caused by the external force leads to the neuronal dysfunction and even death. TBI has been reported to significantly increase the phosphorylation of glial gap junction protein connexin 43 (Cx43), which in turn propagates damages into surrounding brain tissues. However, the neuroprotective and anti-apoptosis effects of glia-derived exosomes have also been implicated in recent studies. Therefore, we detected whether TBI-induced phosphorylation of Cx43 would promote exosome release in rat brain. To generate TBI model, adult male Sprague-Dawley rats were subjected to lateral fluid percussion injury. Phosphorylated Cx43 protein levels and exosome activities were quantified using Western blot analysis following TBI. Long-term potentiation (LTP) was also tested in rat hippocampal slices. TBI significantly increased the phosphorylated Cx43 and exosome markers expression in rat ipsilateral hippocampus, but not cortex. Blocking the activity of Cx43 or ERK, but not JNK, significantly suppressed TBI-induced exosome release in hippocampus. Furthermore, TBI significantly inhibited the induction of LTP in hippocampal slices, which could be partially but significantly restored by pretreatment with exosomes. The results imply that TBI-activated Cx43 could mediate a nociceptive effect by propagating the brain damages, as well as a neuroprotective effect by promoting exosome release. NEW & NOTEWORTHY We have demonstrated in rat traumatic brain injury (TBI) models that both phosphorylated connexin 43 (p-Cx43) expression and exosome release were elevated in the hippocampus following TBI. The promoted exosome release depends on the phosphorylation of Cx43 and requires ERK signaling activation. Exosome treatment could partially restore the attenuated long-term potentiation. Our results provide new insight for future therapeutic direction on the functional recovery of TBI by promoting p-Cx43-dependent exosome release but limiting the gap junction-mediated bystander effect.


2014 ◽  
Vol 1838 (8) ◽  
pp. 2019-2025 ◽  
Author(s):  
Jun Zou ◽  
Xiao-Yang Yue ◽  
Sheng-Chao Zheng ◽  
Guangwei Zhang ◽  
He Chang ◽  
...  

2016 ◽  
Vol 22 (1) ◽  
pp. 77-85 ◽  
Author(s):  
Aleksandra R. Dukic ◽  
David W. McClymont ◽  
Kjetil Taskén

Connexin 43 (Cx43), the predominant gap junction (GJ) protein, directly interacts with the A-kinase-anchoring protein (AKAP) Ezrin in human cytotrophoblasts and a rat liver epithelial cells (IAR20). The Cx43-Ezrin–protein kinase (PKA) complex facilitates Cx43 phosphorylation by PKA, which triggers GJ opening in cytotrophoblasts and IAR20 cells and may be a general mechanism regulating GJ intercellular communication (GJIC). Considering the importance of Cx43 GJs in health and disease, they are considered potential pharmaceutical targets. The Cx43-Ezrin interaction is a protein-protein interaction that opens possibilities for targeting with peptides and small molecules. For this reason, we developed a high-throughput cell-based assay in which GJIC can be assessed and new compounds characterized. We used two pools of IAR20 cells, calcein loaded and unloaded, that were mixed and allowed to attach. Next, GJIC was monitored over time using automated imaging via the IncuCyte imager. The assay was validated using known GJ inhibitors and anchoring peptide disruptors, and we further tested new peptides that interfered with the Cx43-Ezrin binding region and reduced GJIC. Although an AlphaScreen assay can be used to screen for Cx43-Ezrin interaction inhibitors, the cell-based assay described is an ideal secondary screen for promising small-molecule hits to help identify the most potent compounds.


Sign in / Sign up

Export Citation Format

Share Document