scholarly journals Comparison of a xeno-free and serum-free culture system for human embryonic stem cells with conventional culture systems

2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Dan Zhang ◽  
Qingyun Mai ◽  
Tao Li ◽  
Jia Huang ◽  
Chenhui Ding ◽  
...  
Zygote ◽  
2020 ◽  
Vol 28 (3) ◽  
pp. 175-182
Author(s):  
LiYun Wang ◽  
RuiNa Zhang ◽  
RongHua Ma ◽  
GongXue Jia ◽  
ShengYan Jian ◽  
...  

SummaryStem cells are an immortal cell population capable of self-renewal; they are essential for human development and ageing and are a major focus of research in regenerative medicine. Despite considerable progress in differentiation of stem cells in vitro, culture conditions require further optimization to maximize the potential for multicellular differentiation during expansion. The aim of this study was to develop a feeder-free, serum-free culture method for human embryonic stem cells (hESCs), to establish optimal conditions for hESC proliferation, and to determine the biological characteristics of the resulting hESCs. The H9 hESC line was cultured using a homemade serum-free, feeder-free culture system, and growth was observed. The expression of pluripotency proteins (OCT4, NANOG, SOX2, LIN28, SSEA-3, SSEA-4, TRA-1-60, and TRA-1-81) in hESCs was determined by immunofluorescence and western blotting. The mRNA expression levels of genes encoding nestin, brachyury and α-fetoprotein in differentiated H9 cells were determined by RT-PCR. The newly developed culture system resulted in classical hESC colonies that were round or elliptical in shape, with clear and neat boundaries. The expression of pluripotency proteins was increased, and the genes encoding nestin, brachyury, and α-fetoprotein were expressed in H9 cells, suggesting that the cells maintained in vitro differentiation capacity. Our culture system containing a unique set of components, with animal-derived substances, maintained the self-renewal potential and pluripotency of H9 cells for eight passages. Further optimization of this system may expand the clinical application of hESCs.


2019 ◽  
Vol 1 (1) ◽  
pp. 01-05
Author(s):  
Stalin Reddy Challa ◽  
Swathi Goli

Degenerative muscle diseases affect muscle tissue integrity and function. Human embryonic stem cells (hESC) are an attractive source of cells to use in regenerative therapies due to their unlimited capacity to divide and ability to specialize into a wide variety of cell types. A practical way to derive therapeutic myogenic stem cells from hESC is lacking. In this study, we demonstrate the development of two serum-free conditions to direct the differentiation of hESC towards a myogenic precursor state. Using TGFß and PI3Kinase inhibitors in combination with bFGF we showed that one week of differentiation is sufficient for hESC to specialize into PAX3+/PAX7+ myogenic precursor cells. These cells also possess the capacity to further differentiate in vitro into more specialized myogenic cells that express MYOD, Myogenin, Desmin and MYHC, and showed engraftment in vivo upon transplantation in immunodeficient mice. Ex vivo myomechanical studies of dystrophic mouse hindlimb muscle showed functional improvement one month post-transplantation. In summary, this study describes a promising system to derive engrafting muscle precursor cells solely using chemical substances in serum-free conditions and without genetic manipulation.


2005 ◽  
Vol 91 (6) ◽  
pp. 688-698 ◽  
Author(s):  
Yan Li ◽  
Sandra Powell ◽  
Elisa Brunette ◽  
Jane Lebkowski ◽  
Ramkumar Mandalam

Life Sciences ◽  
2016 ◽  
Vol 164 ◽  
pp. 9-14 ◽  
Author(s):  
Dandan Yang ◽  
Shubin Chen ◽  
Changzhao Gao ◽  
Xiaobo Liu ◽  
Yulai Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document