self renewal
Recently Published Documents


TOTAL DOCUMENTS

5220
(FIVE YEARS 1163)

H-INDEX

189
(FIVE YEARS 16)

2022 ◽  
Author(s):  
Dorsa Toghani ◽  
Sharon Zeng ◽  
Elmir Mahammadov ◽  
Edie I. Crosse ◽  
Negar Seyedhassantehrani ◽  
...  

Tissue stem cells are hierarchically organized. Those that are most primitive serve as key drivers of regenerative response but the signals that selectively preserve their functional integrity are largely unknown. Here, we identify a secreted factor, Semaphorin 4A (Sema4A), as a specific regulator of myeloid-biased hematopoietic stem cells (myHSC), which are positioned at the top of the HSC hierarchy. Lack of Sema4A leads to exaggerated myHSC (but not downstream balanced HSC) proliferation after acute inflammatory stress, indicating that Sema4A enforces myHSC quiescence. Strikingly, aged Sema4A knock-out myHSC expand but almost completely lose reconstitution capacity. The effect of Sema4A is non cell-autonomous, since upon transplantation into Sema4A-deficient environment, wild-type myHSC excessively proliferate but fail to engraft long-term. Sema4A constrains inflammatory signaling in myHSC and acts via a surface receptor Plexin-D1. Our data support a model whereby the most primitive tissue stem cells critically rely on a dedicated signal from the niche for self-renewal and life-long persistence.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Manami Hiraiwa ◽  
Kazuya Fukasawa ◽  
Takashi Iezaki ◽  
Hemragul Sabit ◽  
Tetsuhiro Horie ◽  
...  

AbstractGlioma stem cells (GSCs) contribute to the pathogenesis of glioblastoma, the most malignant form of glioma. The implication and underlying mechanisms of SMAD specific E3 ubiquitin protein ligase 2 (SMURF2) on the GSC phenotypes remain unknown. We previously demonstrated that SMURF2 phosphorylation at Thr249 (SMURF2Thr249) activates its E3 ubiquitin ligase activity. Here, we demonstrate that SMURF2Thr249 phosphorylation plays an essential role in maintaining GSC stemness and tumorigenicity. SMURF2 silencing augmented the self-renewal potential and tumorigenicity of patient-derived GSCs. The SMURF2Thr249 phosphorylation level was low in human glioblastoma pathology specimens. Introduction of the SMURF2T249A mutant resulted in increased stemness and tumorigenicity of GSCs, recapitulating the SMURF2 silencing. Moreover, the inactivation of SMURF2Thr249 phosphorylation increases TGF-β receptor (TGFBR) protein stability. Indeed, TGFBR1 knockdown markedly counteracted the GSC phenotypes by SMURF2T249A mutant. These findings highlight the importance of SMURF2Thr249 phosphorylation in maintaining GSC phenotypes, thereby demonstrating a potential target for GSC-directed therapy.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Yanning Xu ◽  
Said M. Afify ◽  
Juan Du ◽  
Bingbing Liu ◽  
Ghmkin Hassan ◽  
...  

AbstractCancer stem cells (CSCs) are capable of continuous proliferation, self-renewal and are proposed to play significant roles in oncogenesis, tumor growth, metastasis and cancer recurrence. We have established a model of CSCs that was originally developed from mouse induced pluripotent stem cells (miPSCs) by proposing miPSCs to the conditioned medium (CM) of cancer derived cells, which is a mimic of carcinoma microenvironment. Further research found that not only PI3K-Akt but also EGFR signaling pathway was activated during converting miPSCs into CSCs. In this study, we tried to observe both of PI3Kγ inhibitor Eganelisib and EGFR inhibitor Gefitinib antitumor effects on the models of CSCs derived from miPSCs (miPS-CSC) in vitro and in vivo. As the results, targeting these two pathways exhibited significant inhibition of cell proliferation, self-renewal, migration and invasion abilities in vitro. Both Eganelisib and Gefitinib showed antitumor effects in vivo while Eganelisib displayed more significant therapeutic efficacy and less side effects than Gefitinib on all miPS-CSC models. Thus, these data suggest that the inhibitiors of PI3K and EGFR, especially PI3Kγ, might be a promising therapeutic strategy against CSCs defeating cancer in the near future.


Author(s):  
Matthieu Valet ◽  
Patrick Narbonne

Our tissues usually have just the right number of cells to optimally fulfil their function. Not enough cells within a tissue can lead to dysfunction, while too many cells result in a tumour. Yet, how this homeostatic balance is maintained remains poorly defined. Most differentiated cells within tissues have a finite lifespan and need to be replaced at a corresponding pace to maintain tissue homeostasis. These new differentiated cells are generated by proliferation of the stem/progenitor cells that serve the tissue. Work in simple invertebrates clearly suggests stem cells respond to at least two types of signals: niche signaling and growth factors. Niche signals promote the undifferentiated state by preventing differentiation, and thus allow for stem cell self-renewal. Growth factor sources comprise a systemic input reflecting the animal’s nutritional status, and a localized, homeostatic feedback from the tissue that the stem cells serve. That homeostatic signal couples stem cell proliferation rates to the tissue’s need for new differentiated cells. Evidence from simple organisms suggests two types of benign tumours can arise from deregulation of either niche or homeostatic signaling. Namely, constitutive niche signaling promotes the formation of undifferentiated “stem cell” tumours, while defective homeostatic signaling leads to the formation of differentiated tumours. We propose that these principles may be conserved and underlie benign tumour formation in humans, while benign tumours can evolve into cancer.


2022 ◽  
Vol 12 ◽  
Author(s):  
Juliane M. D. Ahlers ◽  
Cassandra Falckenhayn ◽  
Nicholas Holzscheck ◽  
Llorenç Solé-Boldo ◽  
Sabrina Schütz ◽  
...  

The dermal sheath (DS) is a population of mesenchyme-derived skin cells with emerging importance for skin homeostasis. The DS includes hair follicle dermal stem cells, which exhibit self-renewal and serve as bipotent progenitors of dermal papilla (DP) cells and DS cells. Upon aging, stem cells exhibit deficiencies in self-renewal and their number is reduced. While the DS of mice has been examined in considerable detail, our knowledge of the human DS, the pathways contributing to its self-renewal and differentiation capacity and potential paracrine effects important for tissue regeneration and aging is very limited. Using single-cell RNA sequencing of human skin biopsies from donors of different ages we have now analyzed the transcriptome of 72,048 cells, including 50,149 fibroblasts. Our results show that DS cells that exhibit stem cell characteristics were lost upon aging. We further show that HES1, COL11A1, MYL4 and CTNNB1 regulate DS stem cell characteristics. Finally, the DS secreted protein Activin A showed paracrine effects on keratinocytes and dermal fibroblasts, promoting proliferation, epidermal thickness and pro-collagen production. Our work provides a detailed description of human DS identity on the single-cell level, its loss upon aging, its stem cell characteristics and its contribution to a juvenile skin phenotype.


2022 ◽  
Author(s):  
Yan Qin ◽  
Peiling Ni ◽  
Qingye Zhang ◽  
Xiao Wang ◽  
Xiaoling Du ◽  
...  

Hbxip, also named Lamtor5, has been well characterized as a transcriptional coactivator in various cancers. However, the role of Hbxip in normal development remains unexplored. Here, we demonstrated that homozygous knockout of Hbxip leads to embryonic lethality, with retarded growth around E7.5. Using Hbxip knockout embryonic stem cells (ESCs), we showed that depletion of Hbxip compromises the self-renewal of ESCs, with reduced expression of pluripotency genes, reduced cell proliferation, and decreased colony forming capacity. In addition, Hbxip-/- ESCs are defective in differentiation, particularly ectodermal and mesodermal differentiation. Consistently, Hbxip-/- epiblast fails to differentiate properly, indicated by sustained expression of Oct4 in E8.5 Hbxip-/- epiblast. Mechanistically, in ESCs, Hbxip interacts with other components of the Ragulator complex, which is required for mTORC1 activation by amino acids. Importantly, ESCs depleted of Ragulator subunits, Lamtor3 or Lamtor4, display differentiation defects similar to those of Hbxip-/- ESCs. Moreover, Hbxip-/-, p14-/-, and p18-/- mice, lacking subunits of the Ragulator complex, also share similar phenotypes, embryonic lethality and retarded growth around E7-8. Thus, we conclude that Hbxip plays a pivotal role in the development and differentiation of the epiblast, as well as the self-renewal and differentiation of ESCs, through activating mTORC1 signaling.


Author(s):  
Peng Sun ◽  
Yingying Han ◽  
Maksim Plikus ◽  
Xing Dai

AbstractStem-cell containing mammary basal epithelial cells exist in a quasi-mesenchymal transcriptional state characterized by simultaneous expression of typical epithelial genes and typical mesenchymal genes. Whether robust maintenance of such a transcriptional state is required for adult basal stem cells to fuel self-renewal and regeneration remains unclear. In this work, we utilized SMA-CreER to direct efficient basal cell-specific deletion of Ovol2, which encodes a transcription factor that inhibits epithelial-to-mesenchymal transition (EMT), in adult mammary gland. We identified a basal cell-intrinsic role of Ovol2 in promoting epithelial, and suppressing mesenchymal, molecular traits. Interestingly, Ovol2-deficient basal cells display minimal perturbations in their ability to support tissue homeostasis, colony formation, and transplant outgrowth. These findings underscore the ability of adult mammary basal cells to tolerate molecular perturbations associated with altered epithelia-mesenchymal plasticity without drastically compromising their self-renewal potential.


eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Nannan Guo ◽  
Kelsey D McDermott ◽  
Yu-Tzu Shih ◽  
Haley Zanga ◽  
Debolina Ghosh ◽  
...  

Experience governs neurogenesis from radial-glial neural stem cells (RGLs) in the adult hippocampus to support memory. Transcription factors in RGLs integrate physiological signals to dictate self-renewal division mode. Whereas asymmetric RGL divisions drive neurogenesis during favorable conditions, symmetric divisions prevent premature neurogenesis while amplifying RGLs to anticipate future neurogenic demands. The identities of transcription factors regulating RGL symmetric self-renewal, unlike those that regulate RGL asymmetric self-renewal, are not known. Here, we show in mice that the transcription factor Kruppel-like factor 9 (Klf9) is elevated in quiescent RGLs and inducible, deletion of Klf9 promotes RGL activation state. Clonal analysis and longitudinal intravital 2-photon imaging directly demonstrate that Klf9 functions as a brake on RGL symmetric self-renewal. In vivo translational profiling of RGLs lacking Klf9 generated a molecular blueprint for RGL symmetric self-renewal that was characterized by upregulation of genetic programs underlying Notch and mitogen signaling, cell-cycle, fatty acid oxidation and lipogenesis. Together, these observations identify Klf9 as a transcriptional regulator of neural stem cell expansion in the adult hippocampus.


iScience ◽  
2022 ◽  
pp. 103742
Author(s):  
Yuen Gao ◽  
Natalia Duque-Wilckens ◽  
Mohammad B. Aljazi ◽  
Adam J. Moeser ◽  
George I. Mias ◽  
...  

Author(s):  
Tatsufumi Mori ◽  
Yuta Onodera ◽  
Maki Itokazu ◽  
Toshiyuki Takehara ◽  
Kanae Shigi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document