scholarly journals Existence and uniqueness of positive periodic solutions for a first-order functional differential equation

2015 ◽  
Vol 2015 (1) ◽  
Author(s):  
Chen Yang ◽  
Chengbo Zhai ◽  
Mengru Hao



2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Ruyun Ma ◽  
Yanqiong Lu

We study one-signed periodic solutions of the first-order functional differential equationu'(t)=-a(t)u(t)+λb(t)f(u(t-τ(t))),t∈Rby using global bifurcation techniques. Wherea,b∈C(R,[0,∞))areω-periodic functions with∫0ωa(t)dt>0,∫0ωb(t)dt>0,τis a continuousω-periodic function, andλ>0is a parameter.f∈C(R,R)and there exist two constantss2<0<s1such thatf(s2)=f(0)=f(s1)=0,f(s)>0fors∈(0,s1)∪(s1,∞)andf(s)<0fors∈(-∞,s2)∪(s2,0).



2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Na Wang

We consider a kind of second-order neutral functional differential equation. On the basis of Mawhin’s coincidence degree, the existence and uniqueness of periodic solutions are proved. It is indicated that the result is related to the deviating arguments. Moreover, we present two simulations to demonstrate the validity of analytical conclusion.



2004 ◽  
Vol 2004 (10) ◽  
pp. 897-905 ◽  
Author(s):  
Xi-lan Liu ◽  
Guang Zhang ◽  
Sui Sun Cheng

We establish the existence of three positive periodic solutions for a class of delay functional differential equations depending on a parameter by the Leggett-Williams fixed point theorem.



Sign in / Sign up

Export Citation Format

Share Document