global bifurcation
Recently Published Documents


TOTAL DOCUMENTS

548
(FIVE YEARS 100)

H-INDEX

37
(FIVE YEARS 3)

Author(s):  
Yusuke Yasugahira ◽  
Masaharu Nagayama

AbstractTheoretical analysis using mathematical models is often used to understand a mechanism of collective motion in a self-propelled system. In the experimental system using camphor disks, several kinds of characteristic motions have been observed due to the interaction of two camphor disks. In this paper, we understand the emergence mechanism of the motions caused by the interaction of two self-propelled bodies by analyzing the global bifurcation structure using the numerical bifurcation method for a mathematical model. Finally, it is also shown that the irregular motion, which is one of the characteristic motions, is chaotic motion and that it arises from periodic bifurcation phenomena and quasi-periodic motions due to torus bifurcation.


2022 ◽  
Author(s):  
Benjamin Nordick ◽  
Polly Y Yu ◽  
Guangyuan Liao ◽  
Tian Hong

Periodic gene expression dynamics are key to cell and organism physiology. Studies of oscillatory expression have focused on networks with intuitive regulatory negative feedback loops, leaving unknown whether other common biochemical reactions can produce oscillations. Oscillation and noise have been proposed to support the capacity of mammalian progenitor cells to restore heterogenous, multimodal expression from extreme subpopulations, but underlying networks and specific roles of noise remained elusive. We use mass-action-based models to show that regulated RNA degradation involving as few as two RNA species, applicable to nearly half of human protein-coding genes, can generate sustained oscillations without imposed feedback. Diverging oscillation periods synergize with noise to robustly restore bimodal expression in cell populations. The global bifurcation organizing this divergence relies on an oscillator and bistable switch which cannot be decomposed into two structural modules. Our work reveals surprisingly rich dynamics of post-transcriptional reactions and a potentially widespread mechanism useful for development and regeneration.


2021 ◽  
Vol 84 (1-2) ◽  
Author(s):  
Deeptajyoti Sen ◽  
Saktipada Ghorai ◽  
Malay Banerjee ◽  
Andrew Morozov

AbstractThe use of predator–prey models in theoretical ecology has a long history, and the model equations have largely evolved since the original Lotka–Volterra system towards more realistic descriptions of the processes of predation, reproduction and mortality. One important aspect is the recognition of the fact that the growth of a population can be subject to an Allee effect, where the per capita growth rate increases with the population density. Including an Allee effect has been shown to fundamentally change predator–prey dynamics and strongly impact species persistence, but previous studies mostly focused on scenarios of an Allee effect in the prey population. Here we explore a predator–prey model with an ecologically important case of the Allee effect in the predator population where it occurs in the numerical response of predator without affecting its functional response. Biologically, this can result from various scenarios such as a lack of mating partners, sperm limitation and cooperative breeding mechanisms, among others. Unlike previous studies, we consider here a generic mathematical formulation of the Allee effect without specifying a concrete parameterisation of the functional form, and analyse the possible local bifurcations in the system. Further, we explore the global bifurcation structure of the model and its possible dynamical regimes for three different concrete parameterisations of the Allee effect. The model possesses a complex bifurcation structure: there can be multiple coexistence states including two stable limit cycles. Inclusion of the Allee effect in the predator generally has a destabilising effect on the coexistence equilibrium. We also show that regardless of the parametrisation of the Allee effect, enrichment of the environment will eventually result in extinction of the predator population.


Nonlinearity ◽  
2021 ◽  
Vol 35 (1) ◽  
pp. 411-444
Author(s):  
Daniele Bartolucci ◽  
Yeyao Hu ◽  
Aleks Jevnikar ◽  
Wen Yang

Abstract We are concerned with the global bifurcation analysis of positive solutions to free boundary problems arising in plasma physics. We show that in general, in the sense of domain variations, the following alternative holds: either the shape of the branch of solutions resembles the monotone one of the model case of the two-dimensional disk, or it is a continuous simple curve without bifurcation points which ends up at a point where the boundary density vanishes. On the other hand, we deduce a general criterion ensuring the existence of a free boundary in the interior of the domain. Application to a classic nonlinear eigenvalue problem is also discussed.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Fatma Aydin Akgun

In this paper, we study the global bifurcation of infinity of a class of nonlinear eigenvalue problems for fourth-order ordinary differential equations with nondifferentiable nonlinearity. We prove the existence of two families of unbounded continuance of solutions bifurcating at infinity and corresponding to the usual nodal properties near bifurcation intervals.


Author(s):  
Igor Y. Popov ◽  
Evgeny G. Fedorov

Abstract The paper is focused on the analysis of effect of coupling strength and time delay for a pair of connected neurons on the dynamics of the system. The FitzHugh–Nagumo model is used as a neuron model. The article contains analytical conditions for Hopf bifurcations in the system. A numerical verification of the results is given. Several examples of global bifurcation in the system were analyzed.


Sign in / Sign up

Export Citation Format

Share Document