scholarly journals Complex dynamics in an SIS epidemic model with nonlinear incidence

2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Ruixia Yuan ◽  
Zhidong Teng ◽  
Jinhui Li
2014 ◽  
Vol 420 (2) ◽  
pp. 987-1004 ◽  
Author(s):  
Chengzhi Li ◽  
Jianquan Li ◽  
Zhien Ma ◽  
Huanping Zhu

2013 ◽  
Vol 393 ◽  
pp. 666-674
Author(s):  
Manuel de La Sen ◽  
A. Ibeas ◽  
S. Alonso-Quesada

This paper studies a time-varyingSIS(i.e.containing susceptible and infected populations) propagation disease model exhibiting a nonlinear incidence rate and impulsive eventual culling of both populations so that the individuals recover with no immunity to the disease. The nonlinear incidence rate consists of two time-varying additive terms proportional to the susceptible and infected populations normalized to the total population.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Ramziya Rifhat ◽  
Qing Ge ◽  
Zhidong Teng

A stochastic SIS-type epidemic model with general nonlinear incidence and disease-induced mortality is investigated. It is proved that the dynamical behaviors of the model are determined by a certain threshold valueR~0. That is, whenR~0<1and together with an additional condition, the disease is extinct with probability one, and whenR~0>1, the disease is permanent in the mean in probability, and when there is not disease-related death, the disease oscillates stochastically about a positive number. Furthermore, whenR~0>1, the model admits positive recurrence and a unique stationary distribution. Particularly, the effects of the intensities of stochastic perturbation for the dynamical behaviors of the model are discussed in detail, and the dynamical behaviors for the stochastic SIS epidemic model with standard incidence are established. Finally, the numerical simulations are presented to illustrate the proposed open problems.


Sign in / Sign up

Export Citation Format

Share Document