scholarly journals Long-term slow slip events along the Nankai trough subduction zone after the 2011 Tohoku earthquake in Japan

2017 ◽  
Vol 69 (1) ◽  
Author(s):  
Shinzaburo Ozawa
2019 ◽  
Vol 46 (9) ◽  
pp. 4591-4598 ◽  
Author(s):  
Kazuaki Ohta ◽  
Yoshihiro Ito ◽  
Ryota Hino ◽  
Shukei Ohyanagi ◽  
Takanori Matsuzawa ◽  
...  

2014 ◽  
Vol 9 (3) ◽  
pp. 272-280 ◽  
Author(s):  
Kenji Satake ◽  
◽  
Yushiro Fujii ◽  

Numerous source models of the 2011 Tohoku earthquake have been proposed based on seismic, geodetic and tsunami data. Common features include a seismic moment of ∼ 4×1022 Nm, a duration of up to ∼ 160 s, and the largest slip of about 50 m east of the epicenter. Exact locations of this largest slip differ with the model, but all show considerable slip near the trench axis where plate coupling was considered to be weak and also at deeper part where M∼7 earthquakes repeatedly occurred at average 37-year intervals. The long-term forecast of large earthquakes made by the Earthquake Research Committee was based on earthquakes occurring in the last few centuries and did not consider such a giant earthquake. Among the several issues remaining unsolved is the tsunami source model. Coastal tsunami height distribution requires a tsunami source delayed by a few minutes and extending north of the epicenter, but seismic data do not indicate such a delayed rupture and there is no clear evidence of additional sources such as submarine landslides along the trench axis. Long-term forecast of giant earthquakes must incorporate non-characteristic models such as earthquake occurrence supercycles, assessments of maximum earthquake size independent of past data, and plate coupling based on marine geodetic data. To assess ground shaking and tsunami in presumed M∼9 earthquakes, characterization and scaling relation fromglobal earthquakes must be used.


2020 ◽  
Author(s):  
Aitaro Kato ◽  
Shigeki Nakagawa

Abstract To improve our understanding of the long-term behavior of low-frequency earthquakes (LFEs) along the tremor belt of the Nankai subduction zone, we applied a matched filter technique to continuous seismic data recorded by a dense and highly sensitive seismic network over an 11 year window, April 2004 to August 2015. We detected a total of ~510,000 LFEs, or ~23× the number of LFEs in the JMA catalog for the same period. During long-term slow slip events (SSEs) in the Bungo Channel, a series of migrating LFE bursts intermittently occurred along the fault-strike direction, with slow hypocenter propagation. Elastic energy released by long-term SSEs appears to control the extent of LFE activity. We identify slowly migrating fronts of LFEs during major episodic tremor and slip (ETS) events, which extend over distances of up to 100 km and follow diffusion-like patterns of spatial evolution with a diffusion coefficient of ~10 4 m 2 /s. This migration pattern closely matches the spatio-temporal evolution of tectonic tremors reported by previous studies. At shorter distances, up to 15 km, we discovered rapid diffusion-like migration of LFEs with a coefficient of ~10 5 m 2 /s. We also recognize that rapid migration of LFEs occurred intermittently in many streaks during major ETS episodes. These observations suggest that slow slip transients contain a multitude of smaller, temporally clustered fault slip events whose evolution is controlled by a diffusional process.


2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Aitaro Kato ◽  
Shigeki Nakagawa

Abstract To improve our understanding of the long-term behavior of low-frequency earthquakes (LFEs) along the tremor belt of the Nankai subduction zone, we applied a matched filter technique to continuous seismic data recorded by a dense and highly sensitive seismic network over an 11-year window, April 2004 to August 2015. We detected a total of ~ 510,000 LFEs, or ~ 23 × the number of LFEs in the JMA catalog for the same period. During long-term slow slip events (SSEs) in the Bungo Channel, a series of migrating LFE bursts intermittently occurred along the fault-strike direction, with slow hypocenter propagation. Elastic energy released by long-term SSEs appears to control the extent of LFE activity. We identify slowly migrating fronts of LFEs during major episodic tremor and slip (ETS) events, which extend over distances of up to 100 km and follow diffusion-like patterns of spatial evolution with a diffusion coefficient of ~ 104 m2/s. This migration pattern closely matches the spatio-temporal evolution of tectonic tremors reported by previous studies. At shorter distances, up to 15 km, we discovered rapid diffusion-like migration of LFEs with a coefficient of ~ 105 m2/s. We also recognize that rapid migration of LFEs occurred intermittently in many streaks during major ETS episodes. These observations suggest that slow slip transients contain a multitude of smaller, temporally clustered fault slip events whose evolution is controlled by a diffusional process.


Sign in / Sign up

Export Citation Format

Share Document