scholarly journals Direct numerical simulation of hypersonic boundary layer transition over a lifting-body model HyTRV

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Han Qi ◽  
Xinliang Li ◽  
Changping Yu ◽  
Fulin Tong

AbstractDirect numerical simulation (DNS) of transition over a hypersonic lifting body model HyTRV developed by China Aerodynamics Research and Development Center is performed. The free-stream parameters are: the free-stream Mach number is 6, the unit Reynolds number is 10000/mm, the free-stream temperature is 79 K, the angle of attack is 0, and the wall temperature is 300 K. Weak random blowing-and-suction perturbations in the leading range are used to trigger the transition. A high order finite-difference code OpenCFD developed by the authors is used for the simulation, and grid convergence test shows that the transition locations are grid-convergence. DNS results show that transition occurs in central area of the lower surface and the concaved region of the upper surface, and the transition regions are also the streamline convergence regions. The transition mechanisms in different regions are investigated by using the spectrum and POD analysis.

Author(s):  
Richard D. Sandberg ◽  
Richard Pichler ◽  
Liwei Chen ◽  
Roderick Johnstone ◽  
Vittorio Michelassi

Modern low pressure turbines (LPT) feature high pressure ratios and moderate Mach and Reynolds numbers, increasing the possibility of laminar boundary-layer separation on the blades. Upstream disturbances including background turbulence and incoming wakes have a profound effect on the behavior of separation bubbles and the type/location of laminar-turbulent transition and therefore need to be considered in LPT design. URANS are often found inadequate to resolve the complex wake dynamics and impact of these environmental parameters on the boundary layers and may not drive the design to the best aerodynamic efficiency. LES can partly improve the accuracy, but has difficulties in predicting boundary layer transition and capturing the delay of laminar separation with varying inlet turbulence levels. Direct Numerical Simulation (DNS) is able to overcome these limitations but has to date been considered too computationally expensive. Here a novel compressible DNS code is presented and validated, promising to make DNS practical for LPT studies. Also, the sensitivity of wake loss coefficient with respect to freestream turbulence levels below 1% is discussed.


Sign in / Sign up

Export Citation Format

Share Document