The elastic impedance inversion method and its application in SLG gas field

2004 ◽  
Author(s):  
Ni Yi ◽  
Zhang Kui
2019 ◽  
Vol 16 (2) ◽  
pp. 218-232
Author(s):  
Da-Xing Wang ◽  
Hao-Fan Wang ◽  
Jin-Feng Ma ◽  
Yong-Gang Wang ◽  
Na Zhang ◽  
...  

2014 ◽  
Author(s):  
Chao Li ◽  
Xingyao Yin ◽  
Guangzhi Zhang

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Othman AAA ◽  
◽  
Ali MFM ◽  
Metwally FI ◽  
Ali AS ◽  
...  

Extended Elastic Impedance (EEI) is a very useful seismic reconnaissance attribute. EEI logs can directly correspond to the petrophysical properties of the reservoir and the seismic. EEI reflectivity volumes can be obtained directly from the pre-stack seismic data. Better discrimination between the seismic anomaly caused by either lithology or fluid content can be utilized by applying this approach. The concept of extended elastic impedance is used to derive the petrophysical properties and distribute the reservoir facies. The study area was a Pliocene gas field, that lies in the deep marine, Offshore Nile Delta, Egypt. The workflow is simple, efficient, and uses very few inputs. We started with the fluid/ lithology logs and investigated the optimum projection in the intercept/gradient domain. Then, we used the conditioned angle stacks, to calculate the intercept/ gradient volumes, using Shuey’s two-term Approximation. The intercept and gradient volumes are converted directly to the fluid and lithology 3D volumes, without any of the pre-stack inversion constraints. The outputs were tested using a blind well and the correlation exceeds 80%. The results show that the EEI is a worthy effort to highlight the difference between the reservoir and nonreservoir sections, to identify the hydrocarbon area.


2021 ◽  
pp. 104314
Author(s):  
Yue-cheng Sun ◽  
Shu-wang Chen ◽  
Yong-fei Li ◽  
Jian Zhang ◽  
Fan-hao Gong

Sign in / Sign up

Export Citation Format

Share Document