Delta reservoir characterization using complex trace seismic attribute method and acoustic impedance inversion method case study in KX field

2021 ◽  
Author(s):  
Rahadian Anggit Wirawan ◽  
Supriyanto Supriyanto ◽  
Yayan Sofyan ◽  
Dede Djuhana ◽  
Waluyo Waluyo ◽  
...  
2021 ◽  
Author(s):  
George-Best Azuoko ◽  
Amobi Ekwe ◽  
Amulu Emmanuel ◽  
Ayatu Usman ◽  
Eluwa Ndidiamaka ◽  
...  

Abstract In the quest to recover by-passed hydrocarbons, extend the life of mature fields, increase hydrocarbon reserves and satiate the increasing global demand for energy, the need for robust reservoir characterization using acoustic impedance inversion continues to grow. In this study, petrophysical parameters were evaluated for two sand intervals RX2 and RX5. Detailed cross-plot analysis of robust petrophysical properties, (density, water Saturation, Lambda-rho and Mu-rho and Porosity) facilitated fluid and lithology discrimination. Well to seismic correlations and acoustic-Impedance model-based, 3-D seismic inversion was done using Hampson Russell software, while petrophysical attribute slices and event-time structure maps were extracted at two horizons - H1 and H2. Results show that RX2 is 100ft thick in Well A, ranging from 5860ft to 5960ft, and 141ft thick in Well B, ranging from 5794ft to 5935ft. Interval RX5, 71ft thick, ranges from 6447ft to 6518ft in Well A, and 88ft thick in Well B, ranging from 6447ft to 6535ft. These intervals had average densities of 2.20g/cc for RX2 and 2.23g/cc for RX5 in Well A. In well B, density values are 1.95g/cc in RX2 and 2.06g/cc for RX5. Average porosities of 25.5% and 27.5% in RX2 and RX5 respectively for Well A; 29% and 19% in RX2 and RX5 respectively for Well B were observed. Respectively, average water and hydrocarbon saturation values of 0.31Swand 0.69Shfor Well A; 0.51Swand 0.49Shfor Well B, was recorded in both intervals. From the results, the thicknesses of RX2 and RX5 conform to the standard thickness of hydrocarbon reservoirs in the study area. Furthermore, the discrimination of the reservoir contents into fluid and lithology by the cross plots, and the observations in the attribute slices indicate that the selected intervals RX2 and RX5 are viable conventional hydrocarbon reservoirs.


Geophysics ◽  
2020 ◽  
pp. 1-93
Author(s):  
Lingqian Wang ◽  
Hui Zhou ◽  
Wenling Liu ◽  
Bo Yu ◽  
Huili He ◽  
...  

Seismic acoustic impedance inversion plays an important role in reservoir prediction. However, single-trace inversion methods often suffer from spatial discontinuities and instability due to the poor-quality seismic records with spatially variable signal-to-noise ratio or missing traces. The specified hyper parameters for seismic inversion cannot be suitable to all seismic traces and subsurface structures. In addition, conventional multichannel inversion imposes lateral continuity with a pre-specified mathematical model. However, the inversion results constrained with specified lateral regularization are inferior when the subsurface situations violate the hypothesis. A data-driven multichannel acoustic impedance inversion method with patch-ordering regularization is introduced, where the spatial correlation of seismic reflection is utilized. The method decomposes the seismic profile into patches and constructs the patch-ordering matrix based on the similarity among seismic patches to record the impedance structural extension. So the patch-ordering matrix can record the spatial extension of the acoustic impedance. Then, a simple regularization with difference operator of varying weights can reduce the random noise presented in the inverted impedance profile, stabilize the inversion result and enhance the spatial continuity of layer extension. The objective function for multichannel poststack seismic impedance inversion can be constructed by integrating the observed seismic record and the spatial continuity in the form of patch-ordering regularization, and be solved effectively with Limited-Memory BFGS algorithm. The synthetic and field data tests illustrate the improvement of accuracy and lateral continuity of inverted results with our method, compared to conventional model-based inversion results.


Geophysics ◽  
2009 ◽  
Vol 74 (5) ◽  
pp. B125-B137 ◽  
Author(s):  
Michael Riedel ◽  
Gilles Bellefleur ◽  
Stephanie Mair ◽  
Thomas A. Brent ◽  
Scott R. Dallimore

We combine acoustic impedance inversion of 3D seismic data, log-to-seismic correlation, and seismic attribute analyses to delineate gas-hydrate zones at the Mallik site, Mackenzie Delta, Northwest Territories, Canada. Well-log data define three distinct hydrate zones over a depth range of 890–1100 m. Synthetic seismic modeling indicates the base of the two deeper hydrate zones are prominent reflectors. The uppermost gas-hydrate zone correlates to seismic data with a lower degree of confidence. The extent and geometry of the two lower hydrate zones suggest that local geology plays a significant role in the lateral and vertical distribution of gas hydrate at Mallik. The reliability of the hydrate concentrations calculated from the inverted impedances isqualified by the match between original and synthetic seismic data to produce confidence maps for the two lower gas-hydrate-bearing intervals. A total in-place volume estimate of solid gas hydrate for an area of [Formula: see text] around well 5L-38 yields a value of approximately [Formula: see text] (equivalently, [Formula: see text] of gas). We further qualify our mapping of gas hydrates by some amount of continuous resource, defined as lateral continuity measured by seismic attribute similarity and sand-dominated rock. Using these attributes, the continuous amount of hydrate at Mallik is about half the in-place volume (i.e., [Formula: see text]). Elsewhere within the 3D seismic cube, the seismic impedance inversion yields evidence of potential gas-hydrate deposits near wells A-06 and P-59 at levels near the predicted base of the hydrate stability zone.


Sign in / Sign up

Export Citation Format

Share Document