acoustic impedance
Recently Published Documents


TOTAL DOCUMENTS

1446
(FIVE YEARS 250)

H-INDEX

44
(FIVE YEARS 4)

Ultrasonics ◽  
2022 ◽  
Vol 119 ◽  
pp. 106601
Author(s):  
Edo Bagus Prastika ◽  
Taichi Shintani ◽  
Tomohiro Kawashima ◽  
Yoshinobu Murakami ◽  
Naohiro Hozumi ◽  
...  

Author(s):  
Sergey Timushev ◽  
Alexey Yakovlev ◽  
Dmitry Klimenko

Subsonic flow air blade machines like UAV propellers generate intensive noise thus the prediction of acoustic impact, optimization of these machines in order to reduce the level of emitted noise is an urgent engineering task. Currently, the development of calculation methods for determining the amplitudes of pressure pulsations and noise characteristics by CFD-CAA methods is a necessary requirement for the development of computer-aided design methods for blade machines, where the determining factors are the accuracy and speed of calculations. The main objective is to provide industrial computer-aided design systems with a highly efficient domestic software to create optimal designs of UAV blade machines that provide a given level of pressure pulsations in the flow part and radiated noise. It comprises: 1) creation of a method for the numerical simulation of sound generation using the correct decomposition of the initial equations of hydrodynamics of a compressible medium and the selection of the source of sound waves in a three-dimensional definition, taking into account the rotation of blades and their interaction with the stator part of the UAV; 2) decomposition of the boundary conditions accounting pseudo-sound disturbances and the complex acoustic impedance at the boundaries of the computational domain 3) development of an effective SLAE solver for solving the acoustic-vortex equation in complex arithmetic (taking into account the boundary conditions in the form of complex acoustic impedance); 4) testing of a new method at all stages of development using experimental data on the generation of pressure pulsations and aerodynamic noise, including a propeller noise measurements.


Author(s):  
Taisei Noguchi ◽  
Yuji Ohashi ◽  
Masaya Omote ◽  
Yuui Yokota ◽  
Shunsuke Kurosawa ◽  
...  

Abstract The influence of the reflected waves at the bonding boundary on the resonance waveform and temperature characteristics was investigated using α-quartz (QZ). The double-layered resonator specimen was fabricated using 129.55°Y- and 0°Y-cut QZ substrates with the thickness ratio x=0.520. The temperature characteristic at the range from 100°C to 300°C was deviated from the calculated values estimated by the equations considering thickness and electric flux density ratio proposed in the previous work, and the resonant waveform of the specimen was deteriorated as compared with that of single-layer resonators. In order to clarify these phenomena, the phase matching conditions and total amplitude in the specimen were examined. As a result, it was clarified that increase of the amplitude in the layer with lower acoustic impedance was affected to the temperature characteristic, and acoustic losses due to reflection / transmission at the bonding boundary was affected to the total amplitude of resonance.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 223
Author(s):  
Xin Li ◽  
Bilong Liu ◽  
Qianqian Wu

A composite structure composed of a porous-material layer mosaicked with a perforated resonator is proposed to improve the low-frequency sound absorption of the porous layer. This structure is investigated in the form of a porous-material matrix (PM) and a perforated resonator (PR), and the PR is a thin perforated plate filled with porous material in its back cavity. Theoretical and numerical models are established to predict the acoustic impedance and sound absorption coefficient of the proposed structure, and two samples made of polyurethane and melamine, respectively, are tested in an impedance tube. The predicted results are consistent with that of the measured. Compared with a single porous layer with the same thickness, the results show that the designed structure provides an additional sound absorption peak at low frequencies. The proposed structure is compact and has an effective absorption bandwidth of more than two octaves especially below the frequency corresponding to 1/4 wavelength. A comparison is also made between the sound absorption coefficients of the proposed structure and a classical micro-perforated plate (MPP), and the results reveal equivalent acoustic performance, suggesting that it can be used as an alternative to the MPP for low–mid frequency sound absorption. Moreover, the influences of the main parameters on the sound absorption coefficient of PPCS are also analyzed, such as the hole diameter, area ratio, flow resistance, and porous-material thickness in the PR. The mechanism of sound absorption is discussed through the surface acoustic impedance and the distributions of particle velocity and sound pressure at several specific frequencies. This work provides a new idea for the applications of the thin porous layer in low- and medium-frequency sound absorption.


Ultrasonics ◽  
2022 ◽  
Vol 118 ◽  
pp. 106580
Author(s):  
Ryo Nagaoka ◽  
Hideyuki Hasegawa ◽  
Kazuki Tamura ◽  
Sachiko Yoshida ◽  
Naohiro Hozumi ◽  
...  
Keyword(s):  

2021 ◽  
pp. 4802-4809
Author(s):  
Mohammed H. Al-Aaraji ◽  
Hussein H. Karim

      The seismic method depends on the nature of the reflected waves from the interfaces between layers, which in turn depends on the density and velocity of the layer, and this is called acoustic impedance. The seismic sections of the East Abu-Amoud field that is located in Missan Province, south-eastern Iraq, were studied and interpreted for updating the structural picture of the major Mishrif Formation for the reservoir in the field. The Mishrif Formation is rich in petroleum in this area, with an area covering about 820 km2. The horizon was calibrated and defined on the seismic section with well logs data (well tops, check shot, sonic logs, and density logs) in the interpretation process to identify the upper and lower boundaries of the Formation.  Seismic attributes were used to study the formation, including instantaneous phase attributes and relative acoustic impedance on time slice of 3D seismic data . Also, relative acoustic impedance was utilized to study the top of the Mishrif Formation. Based on these seismic attributes, karst features of the formation were identified. In addition, the nature of the lithology in the study area and the change in porosity were determined through the relative acoustic impedance The overlap of the top of the Mishrif Formation with the bottom of the Khasib Formation was determined because the Mishrif Formation is considered as an unconformity surface.


2021 ◽  
pp. 41-43
Author(s):  
T. Sumathi

In the present work, ultrasonic velocity (u), viscosity (η) and density (ρ) of ternary mixtures of 1-hexonal and 1-octanol with dimethylformamide in toluene at 303.15 K have been measured over the entire composition range. From the experimental data, acoustical parameters such as adiabatic compressibility (β), intermolecular free length (L ), free volume (V ), acoustic impedance (Z), excess adiabatic compressibility , excess free length , excess free f f E E (b ) (L )f volume and excess acoustic impedance have been computed. The variation of these properties with composition are E E (V ) (Z ) f discussed in terms of molecular interactions between unlike molecules of the mixtures.


2021 ◽  
Author(s):  
Zu Biao Ren ◽  
Abdullah Akarim Al-Rabah ◽  
Antonio Pico ◽  
Michael Freeman

Abstract The challenge of Heavy oil thermal production Kuwait includes how to monitor steam flood effectiveness and cap rock integrity. Due to shallow & heterogeneous reservoirs and thin cap rock, pressurized and heated steam could diffuse in all directions and breach the cap rock. KOC acquired a baseline & time-lapsed surface seismic and 3D VSP for purposes of monitoring CSS production. This paper presents a technical application of seismic inversion to steam chamber size & cap rock integrity interpretation. The seismic image area includes 13 CSS wells, at varying CSS stages of steam injection, soaking and production. The data acquisition consisted of a base and a time-lapsed monitor seismic; each acquisition period lasting for around a week and separated by 40 day intervals. The simultaneous acquisition of surface seismic and the 3D VSP enabled complimentary data exchange and results validation. Well data of sonic and PHIT are used for building a low frequency inversion model. Rock physical modeling is also required to understand the effect of steam and production changes on acoustic and elastic properties. Various geophysical inversion methods are performed on AI inversion of post & pre stack seismic and Poisson's ratio inversion. To estimate reservoir temperature changes due to steam injection, the calibrated rock-physics model was utilized to relate the AI response to temperature change. The steam injection is expected to decrease acoustic impedance. The AI difference exhibits much wider impedance anomalies revealing steam chamber size and the production zone around the wells at various stages of the CSS cycle. Average temperature maps in reservoirs derived from rock-physical modeling also show temperature change around the wells. Inverted seismic attributes of acoustic impedance and temperature were used for study of cap rock integrity. Interpretation results of the steam size through AI and temperature analysis at reservoir and cap rock enable optimization of our CSS and SF completion strategies include steam pressure and volume, soaking period and thermal production control. The result of cap rock integrity monitoring also indicate no serious damage of cap rock under existing conditions of CSS operation (WHT: 420 °F & WHP: 320 PSI), which defines the limits of strategies to increase steam pressure and volume to increase EOR efficiency.


2021 ◽  
Vol 10 (2) ◽  
pp. 84
Author(s):  
Oumar DIALLO ◽  
Harouna Mamadou BAL ◽  
Mamadou Babacar NDIAYE ◽  
Salif GAYE ◽  
Guy FEUILLARD

The characterization of ceramics is essential for the optimization of ultrasonic transducers. To do this we must determine the functional properties of ceramics which are: speed of vibration of longitudinal waves kt = Coupling coefficient: indicates the ability of the ceramic to transform electrical energy into mechanical energy the dielectric constant electrical and mechanical losses acoustic impedance The electrical measurements allowed us to determine the functional properties of the ceramics available to us. We were able to refine the results thus obtained thanks to the digital simulator (KLM).


Author(s):  
Richa ◽  
S. P. Maurya ◽  
Kumar H. Singh ◽  
Raghav Singh ◽  
Rohtash Kumar ◽  
...  

AbstractSeismic inversion is a geophysical technique used to estimate subsurface rock properties from seismic reflection data. Seismic data has band-limited nature and contains generally 10–80 Hz frequency hence seismic inversion combines well log information along with seismic data to extract high-resolution subsurface acoustic impedance which contains low as well as high frequencies. This rock property is used to extract qualitative as well as quantitative information of subsurface that can be analyzed to enhance geological as well as geophysical interpretation. The interpretations of extracted properties are more meaningful and provide more detailed information of the subsurface as compared to the traditional seismic data interpretation. The present study focused on the analysis of well log data as well as seismic data of the KG basin to find the prospective zone. Petrophysical parameters such as effective porosity, water saturation, hydrocarbon saturation, and several other parameters were calculated using the available well log data. Low Gamma-ray value, high resistivity, and cross-over between neutron and density logs indicated the presence of gas-bearing zones in the KG basin. Three main hydrocarbon-bearing zones are identified with an average Gamma-ray value of 50 API units at the depth range of (1918–1960 m), 58 API units (2116–2136 m), and 66 API units (2221–2245 m). The average resistivity is found to be 17 Ohm-m, 10 Ohm-m, and 12 Ohm-m and average porosity is 15%, 15%, and 14% of zone 1, zone 2, and zone 3 respectively. The analysis of petrophysical parameters and different cross-plots showed that the reservoir rock is of sandstone with shale as a seal rock. On the other hand, two types of seismic inversion namely Maximum Likelihood and Model-based seismic inversion are used to estimate subsurface acoustic impedance. The inverted section is interpreted as two anomalous zones with very low impedance ranging from 1800 m/s*g/cc to 6000 m/s*g/cc which is quite low and indicates the presence of loose formation.


Sign in / Sign up

Export Citation Format

Share Document