A vector imaging method has been developed for PS-converted waves in laterally homogeneous vertically transverse isotropic (VTI) media. It decomposes the converted-wave data into two upgoing quasi-shear waves ([Formula: see text] and [Formula: see text]) within the prestack migration algorithm according to subsurface image and surface receiver locations. Because the decomposition is performed as part of the migration, it is consistent with the dip and polarization of the seismic events, unlike traditional algorithms that use premigration rotations. Two shear-wave images with potentially enhanced resolution are formed simultaneously from the vector migration. The effects of VTI anisotropy on PS-converted wave imaging and the capability of the PS vector imaging algorithm to provide enhanced images are illustrated using a point-scatterer model.