unconventional reservoir
Recently Published Documents


TOTAL DOCUMENTS

287
(FIVE YEARS 93)

H-INDEX

12
(FIVE YEARS 4)

Fuel ◽  
2022 ◽  
Vol 310 ◽  
pp. 122390
Author(s):  
Fahad Iqbal Syed ◽  
Temoor Muther ◽  
Amirmasoud Kalantari Dahaghi ◽  
Shahin Neghabhan

Lithosphere ◽  
2022 ◽  
Vol 2022 (Special 1) ◽  
Author(s):  
Guodong Jin ◽  
Huilin Xing ◽  
Tianbin Li ◽  
Rongxin Zhang ◽  
Junbiao Liu ◽  
...  

Abstract Fluid flow is strongly affected by fractures in unconventional reservoirs. It is essential to deeply understand the flow characteristics with fractures for improving the production and efficiency of unconventional reservoir exploitation. The purpose of this work is to develop an accurate numerical model to evaluate the transient-pressure response for well intersecting fractures. The meshes generated from Fullbore Formation Micro-Imager (FMI) images ensure an efficient numerical description of the geometries for fractures and interlayers. The numerical simulation is implemented by an inhouse finite element method-based code and benchmarked with drill stem test (DST) data. The results show that three flow regimes appear in the reservoir with fractures within the test period: wellbore afterflow, pseudolinear flow, and radial flow. In contrast, only the wellbore afterflow and radial flow appear for the wells without fractures. The results also reveal that fractures dominate the flow near the wellbore. Verification and application of the model show the practicability of the integrated approach for investigating the transient-pressure behaviors in the unconventional reservoir.


2021 ◽  
Author(s):  
Ghazal Izadi ◽  
Colleen Barton ◽  
Pierre-Francois Roux ◽  
Tebis Llobet ◽  
Thiago Pessoa ◽  
...  

Abstract For tight reservoirs where hydraulic fracturing is required to enable sufficient fluid mobility for economic production, it is critical to understand the placement of induced fractures, their connectivity, extent, and interaction with natural fractures within the system. Hydraulic fracture initiation and propagation mechanisms are greatly influenced by the effect of the stress state, rock fabric and pre-existing features (e.g. natural fractures, faults, weak bedding/laminations). A pre-existing natural fracture system can dictate the mode, orientation and size of the hydraulic fracture network. A better understanding of the fracture growth phenomena will enhance productivity and also reduce the environmental footprint as less fractures can be created in a much more efficient way. Assessing the role of natural fractures and their interaction with hydraulic fractures in order to account for them in the hydraulic fracture model is achieved by leveraging microseismicity. In this study, we have used a combination of borehole and surface microseismic monitoring to get high vertical resolution locations and source mechanisms. 3D numerical modelling of hydraulic fracturing in complex geological conditions to predict fracture propagation is essential. 3D hydraulic fracturing simulation includes modelling capabilities of stimulation parameters, true 3D fracture propagation with near wellbore 3D complexity including a coupled DFN and the associated microseismic event generation capability. A 3D hydraulic fracture model was developed and validated by matching model predictions to microseismic observations. Microseismic source mechanisms are leveraged to determine the location and geometry of pre-existing features. In this study, we simulate a DFN based on the recorded seismicity of multi stage hydraulic fractures in a horizontal well. The advanced 3D hydraulic fracture modelling software can integrate effectively and efficiently data from a variety of multi-disciplinary sources and scales to create a subsurface characterization of the unconventional reservoir. By incorporating data from 3D seismic, LWD/wireline, core, completion/stimulation monitoring, and production, the software generates a holistic reservoir model embedded in a modular, multi-physics software platform of coupled numerical solvers that capture the fundamental physics of the processes being modelled. This study illustrates the importance of a powerful software tool that captures the necessary physics of stimulation to predict the effects of various completion designs and thereby ensure the most accurate representation of an unconventional reservoir response to a stimulation treatment.


2021 ◽  
Vol 205 ◽  
pp. 108772
Author(s):  
Mohammed A. Aldhuhoori ◽  
Hadi Belhaj ◽  
Hamda K. Alkuwaiti ◽  
Bisweswar Ghosh ◽  
Ryan Fernandes ◽  
...  

Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 1) ◽  
Author(s):  
Yao Fu ◽  
Xiangning Zhang ◽  
Xiaomin Zhou

Abstract The fluid flow connecting the hydraulic fracture and associated unconventional gas or oil reservoir is of great importance to explore such unconventional resource. The deformation of unconventional reservoir caused by heat transport and pore pressure fluctuation may change the stress field of surrounding layer. In this paper, the stress distribution around a penny-shaped reservoir, whose shape is more versatile to cover a wide variety of special case, is investigated via the numerical equivalent inclusion method. Fluid production or hydraulic injection in a subsurface resource caused by the change of pore pressure and temperature within the reservoir may be simulated with the help of the Eshelby inclusion model. By employing the approach of classical eigenstrain, a computational scheme for solving the disturbance produced by the thermally and pressure induced unconventional reservoir is coded to study the effect of Biot coefficient and some other important factors. Moreover, thermo-poro transformation strain and arbitrarily orientated reservoir existing within the surrounding layer are also considered.


2021 ◽  
Author(s):  
Gang Yang

Abstract Unconvnetional reservoirs are predominantly consisted of nanoscale pores. The strong confinement effect within nanopores imposes significant deviations to the confined fluid phase behavior. Minimum miscibility pressure (MMP) in unconventional reservoirs, as a parameter highly related to the phase behavior of confined fluids, is inevitably affected by the nanoscale confinement. The objective of this work is to investigate the impact of nanoscale confinement on MMP of unconventional reservoir fluids and to recognize a reliable theoretical approach to determine the MMP values in unconventional reservoirs. A modified Peng-Robinson equation of state (PR EOS) applicable for confined fluid characterization is applied to perform the EOS simulation of the vanishing interfacial tension (VIT) experiments. The MMP of a binary mixture at bulk and 50 nm are obtained via the VIT simulation. Meanwhile, the multiple mixing cell (MMC) algorithm coupled with the modified PR EOS is applied to compute the MMP for the same binary system. Comparison of the calculated results to the experimental values recognize that the MMC approach has higher accuracy in determining the MMP of confined fluid systems. Moreover, this approach is then applied to predict the MMP values of both Bakken and Eagle Ford oil at different pore sizes with various injected gases. Results demonstrate that the nanoscale confinement causes drastic suppression to the MMP of unconventional reservoir fluids and the suppression rate increases with decreasing pore size. The drastic suppression of MMP is highly favorable for the miscible gas injection EOR in unconventional reservoirs.


2021 ◽  
pp. 11-34
Author(s):  
Amin Taghavinejad ◽  
Mehdi Ostadhassan ◽  
Reza Daneshfar

Fuel ◽  
2021 ◽  
Vol 300 ◽  
pp. 120836
Author(s):  
Rebekah E. Simon ◽  
Samuel C. Johnson ◽  
Omar Khatib ◽  
Markus B. Raschke ◽  
David A. Budd

Sign in / Sign up

Export Citation Format

Share Document