transverse isotropic
Recently Published Documents


TOTAL DOCUMENTS

197
(FIVE YEARS 46)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
Vol 11 (22) ◽  
pp. 10845
Author(s):  
Lixia Sun ◽  
Yun Wang ◽  
Wei Li ◽  
Yongxiang Wei

Under the assumptions of linear elasticity and small deformation in traditional elastodynamics, the anisotropy of the medium has a significant effect on rotations observed during earthquakes. Based on the basic theory of the first-order velocity-stress elastic wave equation, this paper simulates the seismic wave propagation of the translational and rotational motions in two-dimensional isotropic and VTI (transverse isotropic media with a vertical axis of symmetry) media under different source mechanisms with the staggered-grid finite-difference method with respect to nine different seismological models. Through comparing the similarities and differences between the translational and rotational components of the wave fields, this paper focuses on the influence of anisotropic parameters on the amplitude and phase characteristics of the rotations. We verify that the energy of S waves in the rotational components is significantly stronger than that of P waves, and the response of rotations to the anisotropic parameters is more sensitive. There is more abundant information in the high-frequency band of the rotational components. With the increase of Thomsen anisotropic parameters ε and δ, the energy of the rotations increases gradually, which means that the rotational component observation may be helpful to the study of anisotropic parameters.


2021 ◽  
Vol 14 (22) ◽  
Author(s):  
Nattapon Sukjaroen ◽  
Thanittha Thongprapha ◽  
Pittawat Liabkrathok ◽  
Kittitep Fuenkajorn

Geophysics ◽  
2021 ◽  
pp. 1-41
Author(s):  
Ali Raeisdana ◽  
M. Javad Khoshnavaz ◽  
Hamid Reza Siahkoohi

Calculating an accurate seismic velocity model serves an important role in many seismic imaging techniques. The process of velocity model building is often time-consuming, specifically for anisotropic areas, where more than a single parameter is involved in the process. In the past few years, more time-efficient approaches have been considered to estimate seismic velocity as well as anellipticity parameters or heterogeneity factor using local event slopes. Nevertheless, some of these techniques are not practical due to curvature-dependency, or due to the lack of near-offset data. To address such limitations, we use a curvature-independent approach for normal-moveout correction as well as parameter estimation in vertical transverse isotropic media, which is based on local estimation of vertical traveltime using a shifted hyperbola approximation in the absence of near-offset data. The performance of the proposed approach is tested on synthetic and field common-midpoint gathers. It is also assessed in different signal-to-noise ratios and different missing-near-offset situations. Our findings are consistent with the results achieved by the previous methods that were not developed for sparse data.


Geotechnics ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 192-215
Author(s):  
Merita Tafili ◽  
Carlos Grandas Tavera ◽  
Theodoros Triantafyllidis ◽  
Torsten Wichtmann

A new evaluation method for the dilatancy of fine-grained soils based on monotonic and cyclic undrained triaxial tests has been established using two elasticity approaches: isotropic and transverse isotropic hypoelasticity. The evaluation of two clays, Kaolin and Lower Rhine Clay, with the new method also shows that the dilatancy of fine-grained soils is dependent on the stress ratio, the void ratio, and the straining direction along with the intrinsic material parameters. Similar to sand, we can observe a Phase Transformation Line beyond which further shearing induces a volume increase. A generalization of the Taylor dilatancy rule from direct shear to multiaxial space is established, and an extension accounting for the behaviour of soft soils is proposed. We formulate a simple hypoplastic constitutive relation with a modified flow rule that reproduces the observed dilatant as well as contractant behaviour. Some simulations of monotonic as well as cyclic tests prove the accurate performance of the proposed dilatancy relation.


Author(s):  
Shihang Feng ◽  
Lei Fu ◽  
Zongcai Feng ◽  
Gerard T. Schuster

2021 ◽  
Vol 21 (8) ◽  
pp. 04021149
Author(s):  
Zheng Wan ◽  
Yangping Yao ◽  
Liyu Xie ◽  
Chenchen Song
Keyword(s):  

2021 ◽  
Vol 7 ◽  
Author(s):  
Pooya Sahandifar ◽  
Svein Kleiven

Aging, from 40 to +80 years old, causes geometrical and mechanical properties changes in the proximal femur. The subperiosteal width expands faster in men compared to women during aging, while the cortical thickness varies unequally in each sector and differently between men and women. Another change which occurs during aging is bone mechanical properties such as stiffness and ultimate strains. Numerical analysis allows us to study the potential effects of each of the age-dependent changes on the fracture forces separately and combined. We investigated the effects of the geometrical and bone mechanical properties changes due to aging on the femoral strength during a common falling scenario using a transverse isotropic continuum damage model. First, the femur model was adapted from a previously developed human body model named THUMS v4.02. Then, three sets of models were developed to address each of the changes separately and combined for both sexes. We found that the fracture forces in women are on average 1500 N less than in men of the same age. The age-dependent geometrical changes increased the fracture forces in men (25 N/decade), whereas it reduced the fracture forces by 116 N/decade in women. The mechanical properties changes reduced the fracture forces in men more than in women (354.5 N/ decade vs. 225.4 N/decade). When accounting for both geometrical and mechanical properties changes due to aging, the fracture forces decreased by 10.7% of the baseline in women per decade compared to 7.2% per decade in men.


Sign in / Sign up

Export Citation Format

Share Document