3D acoustic least-squares reverse time migration using the energy norm
We have developed a least-squares reverse time migration (LSRTM) method that uses an energy-based imaging condition to obtain faster convergence rates when compared with similar methods based on conventional imaging conditions. To achieve our goal, we also define a linearized modeling operator that is the proper adjoint of the energy migration operator. Our modeling and migration operators use spatial and temporal derivatives that attenuate imaging artifacts and deliver a better representation of the reflectivity and scattered wavefields. We applied the method to two Gulf of Mexico field data sets: a 2D towed-streamer benchmark data set and a 3D ocean-bottom node data set. We found LSRTM resolution improvement relative to RTM images, as well as the superior convergence rate obtained by the linearized modeling and migration operators based on the energy norm, coupled with inversion preconditioning using image-domain nonstationary matching filters.