plane waves
Recently Published Documents


TOTAL DOCUMENTS

2671
(FIVE YEARS 392)

H-INDEX

79
(FIVE YEARS 8)

2022 ◽  
Vol 153 ◽  
pp. 107119
Author(s):  
Xiao Wang ◽  
Shui Wan ◽  
Peng Zhou ◽  
Linyun Zhou ◽  
Yingbo Zhu

2022 ◽  
Vol 415 ◽  
pp. 126689
Author(s):  
Nuno F.M. Martins ◽  
Pedro Mota
Keyword(s):  

Author(s):  
Shanmugapriya V ◽  
Bharathi S ◽  
Esakkinaveen D ◽  
Arunpandiyan S ◽  
Selvakumar B ◽  
...  

Abstract The effect of pressure on the electronic and optical properties of SrAl2O4 up to 25 GPa was studied by means of the pseudo-potential plane waves method within the generalized gradient approximation for exchange and correlation. The calculated lattice parameters are consistent with available experimental and theoretical data. By analyzing the electronic and optical properties, the pressure dependences of the electronic structures and optical constants were investigated. The band structures show an indirect band gap for this compound and the calculated band gaps expend with increasing pressure. Meanwhile, the optical properties including the dielectric spectra, absorption coefficient spectra, reflectivity, and the real part of the refractive index spectra in the low energy range have a blue shift. Given this, the optical properties of SrAl2O4 could be tuned by changing pressure to some degree, which is beneficial to the optical applications.


Author(s):  
Hua Liang

Abstract The effect of pressure on the electronic and optical properties of SrAl2O4 up to 25 GPa was studied by means of the pseudo-potential plane waves method within the generalized gradient approximation for exchange and correlation. The calculated lattice parameters are consistent with available experimental and theoretical data. By analyzing the electronic and optical properties, the pressure dependences of the electronic structures and optical constants were investigated. The band structures show an indirect band gap for this compound and the calculated band gaps expend with increasing pressure. Meanwhile, the optical properties including the dielectric spectra, absorption coefficient spectra, reflectivity, and the real part of the refractive index spectra in the low energy range have a blue shift. Given this, the optical properties of SrAl2O4 could be tuned by changing pressure to some degree, which is beneficial to the optical applications.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Myung-Joon Lee ◽  
Il-Kwon Oh

AbstractValley degree of freedom, associated with the valley topological phase, has propelled the advancement of the elastic waveguide by offering immunity to backscattering against bending and weak perturbations. Despite many attempts to manipulate the wave path and working frequency of the waveguide, internal characteristic of an elastic wave such as rich polarization has not yet been utilized with valley topological phases. Here, we introduce the rich polarization into the valley degree of freedom, to achieve topologically protected in-plane and out-of-plane mode separation of an elastic wave. Accidental degeneracy proves its real worth of decoupling the in-plane and out-of-plane polarized valley Hall phases. We further demonstrate independent and simultaneous control of in-plane and out-of-plane waves, with intact topological protection. The presenting procedure for designing the topologically protected wave separation based on accidental degeneracy will widen the valley topological physics in view of both generation mechanism and application areas.


Author(s):  
Nihal Limbu ◽  
Mahesh Ram ◽  
Himanshu Joshi ◽  
Atul Saxena ◽  
Amit Shankar

The study of electronic and thermoelectric properties of Nd doped Ce filled skutterudites (CeFe4P12, CeFe4As12, and CeOs4P12) were explored using full potential lineralized augmented plane waves (FP-LAPW). The exchange-correlation between...


SPIN ◽  
2021 ◽  
Author(s):  
Youcef Daoudi ◽  
Hadj Moulay Ahmed Mazouz ◽  
Brahim Lagoun ◽  
Ali Benghia

We report first-principles investigation on structural, electronic and magnetic properties of 3d transition metal element-doped rock-salt calcium selenide Ca[Formula: see text]TMxSe (TM = V, Cr and Mn) at concentrations [Formula: see text] = 0.0625, 0.125 and 0.25. We performed the calculations in the framework of the density functional theory (DFT) using the full-potential linearized augmented plane waves plus local orbitals (FP-LAPW+lo) method within the Wu–Cohen generalized gradient approximation (WC-GGA) for the structural optimization and the Tran–Blaha modified Becke–Johnson (TBmBJ) potential for the electronic and the magnetic properties. The computed spin-polarized band structures and densities of states show that Ca[Formula: see text]CrxSe compounds at all studied concentrations are half-metallic ferromagnets with a complete spin polarization of 100% at Fermi-level while the Ca[Formula: see text]VxSe and Ca[Formula: see text]MnxSe are ferromagnetic semiconductors. The total magnetic moments for Ca[Formula: see text]VxSe, Ca[Formula: see text]CrxSe, and Ca[Formula: see text]MnxSe show the integer values of 3[Formula: see text][Formula: see text], 4[Formula: see text][Formula: see text], and 5[Formula: see text][Formula: see text], respectively, with a major contribution of transition metal elements (TM) in the total magnetization. Also, we reported the calculated exchange constants [Formula: see text] and [Formula: see text] and the band edge spin splitting of the valence ([Formula: see text]) and conduction ([Formula: see text]) bands. The ferromagnetism of these compounds is due to the super-exchange and the double-exchange mechanisms in addition to the strong p–d exchange interaction. Therefore, the predicted results indicate that the diluted Ca[Formula: see text]TMxSe (TM = V, Cr, Mn) compounds are suitable candidates for a possible application in the field of spintronic technology.


Author(s):  
Dr. Shailendra Kumar Srivastava

Abstract: For many years after Einstein proposed his general theory of relativity, only a few exact solutions were known. Today the situation is completely different, and we now have a vast number of such solutions. However, very few are well understood in the sense that they can be clearly interpreted as the fields of real physical sources. The obvious exceptions are the Schwarzschild and Kerr solutions. These have been very thoroughly analysed, and clearly describe the gravitational fields surrounding static and rotating black holes respectively. In practice, one of the great difficulties of relating the particular features of general relativity to real physical problems, arises from the high degree of non-linearity of the field equations. Although the linearized theory has been used in some applications, its use is severely limited. Many of the most interesting properties of space-time, such as the occurrence of singularities, are consequences of the non-linearity of the equations. Keywords: General Relativity , Space-Time, Singularities, Non-linearity of the Equations.


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 72
Author(s):  
Stefano Bellucci ◽  
Volodymyr Fitio ◽  
Iryna Yaremchuk ◽  
Oleksandr Vernyhor ◽  
Yaroslav Bobitski

In this work the features of the resonance in a rectangular dielectric surface-relief gratings, illuminated with a limited cross-section Gaussian beam, have been studied. The rigorous coupled wave method and beam decomposition into the plane waves by the Fourier transform have been used. It is shown that there is a resonant wavelength for each thickness of the dielectric grating. The value of resonant wavelength depends on the beam angle of incidence on the gratings. Moreover, the two types of resonances can occur in the grating at certain grating parameters. The power reflection coefficient is practically equal to unity for the first type of resonance and is much smaller than unity, for the second one. The obtained results extend the knowledge regarding the nature of the waveguide resonance in the dielectric grating, considering the limited cross section beam, and they can increase its use in many applications.


Sign in / Sign up

Export Citation Format

Share Document