Multiparameter least-squares reverse time migration for acoustic—elastic coupling media based on ocean bottom cable data

2019 ◽  
Vol 16 (3) ◽  
pp. 327-337
Author(s):  
Ying-Ming Qu ◽  
Chong-Peng Huang ◽  
Chang Liu ◽  
Chang Zhou ◽  
Zhen-Chun Li ◽  
...  
Geophysics ◽  
2014 ◽  
Vol 79 (1) ◽  
pp. S11-S21 ◽  
Author(s):  
Dongliang Zhang ◽  
Gerard T. Schuster

The theory of least-squares reverse time migration of multiples (RTMM) is presented. In this method, least squares migration (LSM) is used to image free-surface multiples where the recorded traces are used as the time histories of the virtual sources at the hydrophones and the surface-related multiples are the observed data. For a single source, the entire free-surface becomes an extended virtual source where the downgoing free-surface multiples more fully illuminate the subsurface compared to the primaries. Since each recorded trace is treated as the time history of a virtual source, knowledge of the source wavelet is not required and the ringy time series for each source is automatically deconvolved. If the multiples can be perfectly separated from the primaries, numerical tests on synthetic data for the Sigsbee2B and Marmousi2 models show that least-squares reverse time migration of multiples (LSRTMM) can significantly improve the image quality compared to RTMM or standard reverse time migration (RTM) of primaries. However, if there is imperfect separation and the multiples are strongly interfering with the primaries then LSRTMM images show no significant advantage over the primary migration images. In some cases, they can be of worse quality. Applying LSRTMM to Gulf of Mexico data shows higher signal-to-noise imaging of the salt bottom and top compared to standard RTM images. This is likely attributed to the fact that the target body is just below the sea bed so that the deep water multiples do not have strong interference with the primaries. Migrating a sparsely sampled version of the Marmousi2 ocean bottom seismic data shows that LSM of primaries and LSRTMM provides significantly better imaging than standard RTM. A potential liability of LSRTMM is that multiples require several round trips between the reflector and the free surface, so that high frequencies in the multiples suffer greater attenuation compared to the primary reflections. This can lead to lower resolution in the migration image compared to that computed from primaries. Another liability is that the multiple migration image is more down-dip limited than the standard primaries migration image. Finally, if the surface-related multiple elimination method is imperfect and there are strong multiples interfering with the primaries, then the resulting LSRTMM image can be significantly degraded. We conclude that LSRTMM can be a useful complement, not a replacement, for RTM of primary reflections.


Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. S261-S270 ◽  
Author(s):  
Daniel Rocha ◽  
Paul Sava ◽  
Antoine Guitton

We have developed a least-squares reverse time migration (LSRTM) method that uses an energy-based imaging condition to obtain faster convergence rates when compared with similar methods based on conventional imaging conditions. To achieve our goal, we also define a linearized modeling operator that is the proper adjoint of the energy migration operator. Our modeling and migration operators use spatial and temporal derivatives that attenuate imaging artifacts and deliver a better representation of the reflectivity and scattered wavefields. We applied the method to two Gulf of Mexico field data sets: a 2D towed-streamer benchmark data set and a 3D ocean-bottom node data set. We found LSRTM resolution improvement relative to RTM images, as well as the superior convergence rate obtained by the linearized modeling and migration operators based on the energy norm, coupled with inversion preconditioning using image-domain nonstationary matching filters.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yanbao Zhang ◽  
Yike Liu ◽  
Jia Yi ◽  
Xuejian Liu

Nowadays the ocean bottom node (OBN) acquisition is widely used in oil and gas resource exploration and seismic monitoring. Conventional imaging algorithms of OBN data mainly focus on the processing of up-going primaries and down-going first-order multiples. Up-going multiples and higher-order down-going multiples are generally regarded as noise and should be eliminated or ignored in conventional migration methods. However, multiples carry abundant information about subsurface structures where primaries cannot achieve. To take full advantage of multiples, we propose a migration method using OBN down-going all-order multiples. And then the least-squares optimization algorithm is used to suppress crosstalks. Finally, a phase-encoding-based migration algorithm is developed to cut down the computational cost by blending several common receiver gathers together using random time delays and polarity reversals. Numerical experiments on the complex Marmousi model illustrate that the developed approach can enlarge the imaging area evidently, reduce the computational cost effectively, and enhance the image quality by suppressing crosstalks and improving the resolution.


2021 ◽  
Vol 1719 (1) ◽  
pp. 012030
Author(s):  
Phudit Sombutsirinun ◽  
Chaiwoot Boonyasiriwat

Geophysics ◽  
2021 ◽  
pp. 1-73
Author(s):  
Milad Farshad ◽  
Hervé Chauris

Elastic least-squares reverse time migration is the state-of-the-art linear imaging technique to retrieve high-resolution quantitative subsurface images. A successful application requires many migration/modeling cycles. To accelerate the convergence rate, various pseudoinverse Born operators have been proposed, providing quantitative results within a single iteration, while having roughly the same computational cost as reverse time migration. However, these are based on the acoustic approximation, leading to possible inaccurate amplitude predictions as well as the ignorance of S-wave effects. To solve this problem, we extend the pseudoinverse Born operator from acoustic to elastic media to account for the elastic amplitudes of PP reflections and provide an estimate of physical density, P- and S-wave impedance models. We restrict the extension to marine environment, with the recording of pressure waves at the receiver positions. Firstly, we replace the acoustic Green's functions by their elastic version, without modifying the structure of the original pseudoinverse Born operator. We then apply a Radon transform to the results of the first step to calculate the angle-dependent response. Finally, we simultaneously invert for the physical parameters using a weighted least-squares method. Through numerical experiments, we first illustrate the consequences of acoustic approximation on elastic data, leading to inaccurate parameter inversion as well as to artificial reflector inclusion. Then we demonstrate that our method can simultaneously invert for elastic parameters in the presence of complex uncorrelated structures, inaccurate background models, and Gaussian noisy data.


Geophysics ◽  
2021 ◽  
pp. 1-65
Author(s):  
Yingming Qu ◽  
Yixin Wang ◽  
Zhenchun Li ◽  
Chang Liu

Seismic wave attenuation caused by subsurface viscoelasticity reduces the quality of migration and the reliability of interpretation. A variety of Q-compensated migration methods have been developed based on the second-order viscoacoustic quasidifferential equations. However, these second-order wave-equation-based methods are difficult to handle with density perturbation and surface topography. In addition, the staggered grid scheme, which has an advantage over the collocated grid scheme because of its reduced numerical dispersion and enhanced stability, works in first-order wave-equation-based methods. We have developed a Q least-squares reverse time migration method based on the first-order viscoacoustic quasidifferential equations by deriving Q-compensated forward-propagated operators, Q-compensated adjoint operators, and Q-attenuated Born modeling operators. Besides, our method using curvilinear grids is available even when the attenuating medium has surface topography and can conduct Q-compensated migration with density perturbation. The results of numerical tests on two synthetic and a field data sets indicate that our method improves the imaging quality with iterations and produces better imaging results with clearer structures, higher signal-to-noise ratio, higher resolution, and more balanced amplitude by correcting the energy loss and phase distortion caused by Q attenuation. It also suppresses the scattering and diffracted noise caused by the surface topography.


Sign in / Sign up

Export Citation Format

Share Document