Azimuthal investigation of compressional seismic-wave attenuation in a fractured reservoir

Geophysics ◽  
2019 ◽  
Vol 84 (6) ◽  
pp. B437-B446 ◽  
Author(s):  
Fateh Bouchaala ◽  
Mohammed Y. Ali ◽  
Jun Matsushima ◽  
Youcef Bouzidi ◽  
Eric M. Takam Takougang ◽  
...  

Three-dimensional vertical seismic profiling data acquired from an oilfield located in Abu Dhabi, United Arab Emirates, were used to obtain a high-resolution multioffset azimuthal estimate of compressional seismic wave attenuation. On the basis of the assumption that the fracture strike corresponds to the azimuthal direction [Formula: see text] at which the attenuation is minimized, fracture orientations were obtained in three reservoir units. Two approaches were used to determine [Formula: see text]: first from the variation of the absolute attenuation [Formula: see text] with the azimuth and second from the variation of the relative attenuation [Formula: see text] with the azimuth. The rose diagrams of [Formula: see text] estimated from the [Formula: see text] variation indicated better agreement with those showing the strikes of open and cemented fractures obtained from core interpretation than with either of those showing the two types of fractures separately. However, the rose diagrams of [Formula: see text] estimated from the variation of [Formula: see text] were more similar to those showing the strikes of open fractures obtained from core and Fullbore Formation Microimager data. This observation can be explained by the fact that in the first approach, all types of fractures contribute to the scattering and fluid-related mechanisms of [Formula: see text]. However, in the second approach, [Formula: see text] is obtained from a least-squares fitting of the variation of [Formula: see text] with the azimuth, which is based on the squirt flow mechanism that is caused by the movement of fluid between grain pores and fractures. Therefore, a comparison of the orientations obtained using these two approaches can be an efficient way to separately determine the orientations of open and cemented fractures.

2019 ◽  
Author(s):  
Fateh Bouchaala ◽  
Mohammed Y. Ali ◽  
Jun Matsushima ◽  
Youcef Bouzidi ◽  
Eric. M. Takam Takougang ◽  
...  

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 534
Author(s):  
Fateh Bouchaala ◽  
Mohammed Y. Ali ◽  
Jun Matsushima ◽  
Youcef Bouzidi ◽  
Mohammed S. Jouini ◽  
...  

Previous studies performed in Abu Dhabi oilfields, United Arab Emirates, revealed the direct link of seismic wave attenuation to petrophysical properties of rocks. However, all those studies were based on zero offset VSP data, which limits the attenuation estimation at one location only. This is due to the difficulty of estimating attenuation from 3D seismic data, especially in carbonate rocks. To overcome this difficulty, we developed a workflow based on the centroid frequency shift method and Gabor transform which is optimized by using VSP data. The workflow was applied on 3D Ocean Bottom Cable seismic data. Distinct attenuation anomalies were observed in highly heterogeneous and saturated zones, such as the reservoirs and aquifers. Scattering shows significant contribution in attenuation anomalies, which is unusual in sandstones. This is due to the complex texture and heterogeneous nature of carbonate rocks. Furthermore, attenuation mechanisms such as frictional relative movement between fluids and solid grains, are most likely other important causes of attenuation anomalies. The slight lateral variation of attenuation reflects the lateral homogeneous stratigraphy of the oilfield. The results demonstrate the potential of seismic wave attenuation for delineating heterogeneous zones with high fluid content, which can substantially help for enhancing oil recovery.


2018 ◽  
Author(s):  
Fateh Bouchaala ◽  
Mohammed Y. Ali ◽  
Youcef Bouzidi ◽  
Jun Matsushima ◽  
Aala A.I. Mohamed ◽  
...  

2018 ◽  
Vol 67 (4) ◽  
pp. 956-968 ◽  
Author(s):  
Samuel Chapman ◽  
Jan V. M. Borgomano ◽  
Hanjun Yin ◽  
Jerome Fortin ◽  
Beatriz Quintal

Sign in / Sign up

Export Citation Format

Share Document