east african rift system
Recently Published Documents


TOTAL DOCUMENTS

244
(FIVE YEARS 69)

H-INDEX

37
(FIVE YEARS 4)

Author(s):  
G J Hearn

The Cenozoic East African Rift System (EARS) is the largest continental rift valley system on Earth. Extending over a total distance of approximately 4,500 km, and with an average width of about 50 km, it is home to some of East Africa's largest urban populations and some of its most important transport, energy and water supply infrastructure. Rifting commenced during the Early Miocene and crustal extension has continued to the present day, posing seismic and volcanic hazards throughout its history of human occupation. Deep-seated landslides also present significant challenges for public safety, land management and infrastructure development on the flanks of rift margins. The rift floor itself poses a range of geohazards to community livelihood and engineering infrastructure, including ground fissuring and cavity collapse, flooding and sedimentation. On the positive side, the development of the EARS has created hydrocarbon and geothermal energy resources, and geomaterials for use as aggregates and cement substitutes in road and building construction. Optimising the use of these resources requires careful planning to ensure sustainability, while land use management and infrastructure development must take full consideration of the hazards posed by the ground and the fragility and dynamism of the human and physical environment.


2021 ◽  
Author(s):  
Rene Bobe ◽  
Vera Aldeias ◽  
Zeresenay Alemseged ◽  
Will Archer ◽  
Georges Aumaitre ◽  
...  

The Miocene is a key time in the evolution of African mammals and their ecosystems witnessing the origin of the African apes and the isolation of eastern coastal forests through an expanding biogeographic arid corridor. Until recently, however, Miocene sites from the southeastern regions of the continent were unknown. Here we report discovery of the first Miocene fossil teeth from the shoulders of the Urema Rift in Gorongosa National Park, Mozambique, at the southern East African Rift System. We provide the first 1) radiometric age determinations of the fossiliferous Mazamba Formation, 2) reconstructions of past vegetation in the region based on pedogenic carbonates and fossil wood, and 3) description of fossil teeth from the southern rift. Gorongosa is unique in the East African Rift System in combining marine invertebrates, marine vertebrates, terrestrial mammals, and fossil woods in coastal paleoenvironments. The Gorongosa fossil sites offer the first evidence of persistent woodlands and forests on the coastal margins of southeastern Africa during the Miocene, and an exceptional assemblage of fossil vertebrates including new species. Further work will allow the testing of hypotheses positing the formation of a northeast-southwest arid corridor isolating species on the eastern coastal forests from those elsewhere in Africa.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Juliet Biggs ◽  
Atalay Ayele ◽  
Tobias P. Fischer ◽  
Karen Fontijn ◽  
William Hutchison ◽  
...  

AbstractOver the past two decades, multidisciplinary studies have unearthed a rich history of volcanic activity and unrest in the densely-populated East African Rift System, providing new insights into the influence of rift dynamics on magmatism, the characteristics of the volcanic plumbing systems and the foundation for hazard assessments. The raised awareness of volcanic hazards is driving a shift from crisis response to reducing disaster risks, but a lack of institutional and human capacity in sub-Saharan Africa means baseline data are sparse and mitigating geohazards remains challenging.


2021 ◽  
Author(s):  
Francois Hategekimana ◽  
Theophile Mugerwa ◽  
Cedrick Nsengiyumva ◽  
Digne Rwabuhungu ◽  
Juliet Confiance Kabatesi

Abstract Hot spring is a hot water that is naturally occurring on the surface from the underground and typically heated by subterranean volcanic activity and local underground geothermal gradient. There are four main hot springs in Rwanda such as: Kalisimbi, Bugarama, Kinigi and Nyamyumba former name Gisenyi hot springs. This research focused on the geochemical analysis of Nyamyumba hot springs located near the fresh water of Lake Kivu. Nyamyumba hot springs are located in the western branch of the East African Rift System and they are located near Virunga volcanic complex, explaining the rising and heating of water. The concentrations of Sulfate, Iron, Ammonia, Alkalinity, Silica, Phosphate, Salinity, Alkalinity, and Conductivity using standard procedures were measured. The results showed that hot spring water has higher concentrations of chemicals compared to Lake Kivu water and the geochemistry of these hot springs maybe associated with rock dissolution by hot water. The measured parameters were compared with World Health Organization (WHO) standards for recreational waters and it has been identified that Nyamyumba hot spring are safe to use in therapeutic activities (Swimming).


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11573
Author(s):  
João d’Oliveira Coelho ◽  
Robert L. Anemone ◽  
Susana Carvalho

Background Paleoanthropological research focus still devotes most resources to areas generally known to be fossil rich instead of a strategy that first maps and identifies possible fossil sites in a given region. This leads to the paradoxical task of planning paleontological campaigns without knowing the true extent and likely potential of each fossil site and, hence, how to optimize the investment of time and resources. Yet to answer key questions in hominin evolution, paleoanthropologists must engage in fieldwork that targets substantial temporal and geographical gaps in the fossil record. How can the risk of potentially unsuccessful surveys be minimized, while maximizing the potential for successful surveys? Methods Here we present a simple and effective solution for finding fossil sites based on clustering by unsupervised learning of satellite images with the k-means algorithm and pioneer its testing in the Urema Rift, the southern termination of the East African Rift System (EARS). We focus on a relatively unknown time period critical for understanding African apes and early hominin evolution, the early part of the late Miocene, in an overlooked area of southeastern Africa, in Gorongosa National Park, Mozambique. This clustering approach highlighted priority targets for prospecting that represented only 4.49% of the total area analysed. Results Applying this method, four new fossil sites were discovered in the area, and results show an 85% accuracy in a binary classification. This indicates the high potential of a remote sensing tool for exploratory paleontological surveys by enhancing the discovery of productive fossiliferous deposits. The relative importance of spectral bands for clustering was also determined using the random forest algorithm, and near-infrared was the most important variable for fossil site detection, followed by other infrared variables. Bands in the visible spectrum performed the worst and are not likely indicators of fossil sites. Discussion We show that unsupervised learning is a useful tool for locating new fossil sites in relatively unexplored regions. Additionally, it can be used to target specific gaps in the fossil record and to increase the sample of fossil sites. In Gorongosa, the discovery of the first estuarine coastal forests of the EARS fills an important paleobiogeographic gap of Africa. These new sites will be key for testing hypotheses of primate evolution in such environmental settings.


2021 ◽  
Author(s):  
César Daniel Castro ◽  
Miriam Christina Reiss ◽  
Arne Spang ◽  
Philip Hering ◽  
Luca de Siena ◽  
...  

<p>How well can geophysical methods image magmatic systems? Geophysical methods are commonly used to image magmatic systems; however, synthetic studies which give insights into the resolution of such methods and their interpretational scope are rare. Gravity anomalies, magnetotelluric, seismological and geodynamical modelling all have a different sensitivity to the rock parameters and are thus likely complementary methods. Our study aims to better understand their interplay by performing joint modelling of a synthetic magmatic system.  Our model setup of a magma chamber is inspired by seismological observations at the Natron plumbing system including active volcano Oldoinyo Lengai within the East African Rift system. The geodynamic modelling is guided by shear-wave velocity anomalies and it is constrained by a large Bouguer gravity anomaly which is modelled by a voxel-based gravity code. It yields the 3D distribution of several geological parameters (pressure, temperature, stress, density, rock type). The parameters are converted into a 3D resistivity distribution. By 3D forward modelling including the topography, synthetic MT transfer functions (phase tensor, induction vectors) are calculated for a rectangular grid of 441 sites covering the area. The variation of geodynamic parameters and/or petrological relations alters the related resistivity distribution and thus yields the sensitivity of MT responses to geodynamic parameters. In turn, MT observations may constrain geodynamic modelling by inverting MT transfer functions. The inversion is performed allowing for the recent seismicity distribution beneath the Natron plumbing system, assuming that active seismic areas are related to enhanced resistivity. The inversion is performed for a realistic distribution (in view of logistic accessibility) of about 40 MT sites.</p><p>By combining multiple forward models, this study yields insights into the sensitivity of different observables and thus provides a valuable base on how MT, gravity and seismological observations can help imaging a complex geological setting.</p>


Sign in / Sign up

Export Citation Format

Share Document