High-resolution seismic reflection data acquisition and interpretation, Lake Neusiedl, Austria, northwest Pannonian Basin

2018 ◽  
Vol 6 (1) ◽  
pp. SB77-SB97 ◽  
Author(s):  
Johannes Loisl ◽  
Gabor Tari ◽  
Erich Draganits ◽  
András Zámolyi ◽  
Ingrid Gjerazi

A combined 400+ km of single- and multichannel seismic reflection data were acquired on Lake Neusiedl in northeast Austria in May 2013. This geophysical campaign was a multinational academic effort among the Universities of Vienna, Budapest, Bremen, and Southampton. Lake Neusiedl is an exceptionally shallow lake, with an average water depth of only approximately 1.4 m. Although high-resolution single-channel seismic reflection data have been collected before on this lake, the multichannel seismic acquisition, towing a 60 m cable and an air gun behind a retrofitted ferry boat, was a completely new approach in this area. The quality of the multichannel data turned out to be exceptionally good; i.e., the high-frequency data illuminated the subsurface of the lake for the first time, down to the pre-Cenozoic basement at approximately 600 m depth. The most prominent findings of the new data include (1) a consistent southeasterly dip of erosionally truncated Late Miocene (Pannonian) sediments beneath a very thin Holocene mud layer, (2) the presence of major throughgoing fault systems (including a positive flower structure), (3) at least one Pannonian progradational sequence defined by seismic clinoforms indicating a paleowater depth of approximately 40–80 m, (4) flat spots in several locations of the study area corresponding to possibly biogenic gas in a few hundred meters depth beneath the lake, (5) vertical data wipeouts, which are interpreted as gas chimneys reaching the lake bottom, and (6) definition of the pre-Cenozoic basement. Interestingly, the gas chimneys are interpreted to correspond to the well-known gas seeps (“Kochbrunnen”) in Lake Neusiedl, which were originally described as subaqueous water springs on the lake floor responsible for ice-free areas in the lake ice cover during winter.

2021 ◽  
Author(s):  
Piotr Krzywiec ◽  
Łukasz Słonka ◽  
Quang Nguyen ◽  
Michał Malinowski ◽  
Mateusz Kufrasa ◽  
...  

<p>In 2016, approximately 850 km of high-resolution multichannel seismic reflection data of the BALTEC survey have been acquired offshore Poland within the transition zone between the East European Craton and the Paleozoic Platform. Data processing, focused on removal of multiples, strongly overprinting geological information at shallower intervals, included SRME, TAU-P domain deconvolution, high resolution parabolic Radon demultiple and SWDM (Shallow Water De-Multiple). Entire dataset was Kirchhoff pre-stack time migrated. Additionally, legacy shallow high-resolution multichannel seismic reflection data acquired in this zone in 1997 was also used. All this data provided new information on various aspects of the Phanerozoic evolution of this area, including Late Cretaceous to Cenozoic tectonics and sedimentation. This phase of geological evolution could be until now hardly resolved by analysis of industry seismic data as, due to limited shallow seismic imaging and very strong overprint of multiples, essentially no information could have been retrieved from this data for first 200-300 m. Western part of the BALTEC dataset is located above the offshore segment of the Mid-Polish Swell (MPS) – large anticlinorium formed due to inversion of the axial part of the Polish Basin. BALTEC seismic data proved that Late Cretaceous inversion of the Koszalin – Chojnice fault zone located along the NE border of the MPS was thick-skinned in nature and was associated with substantial syn-inversion sedimentation. Subtle thickness variations and progressive unconformities imaged by BALTEC seismic data within the Upper Cretaceous succession in vicinity of the Kamień-Adler and the Trzebiatów fault zones located within the MPS documented complex interplay of Late Cretaceous basin inversion, erosion and re-deposition. Precambrian basement of the Eastern, cratonic part of the study area is overlain by Cambro-Silurian sedimentary cover. It is dissected by a system of steep, mostly reverse faults rooted in most cases in the deep basement. This fault system has been regarded so far as having been formed mostly in Paleozoic times, due to the Caledonian orogeny. As a consequence, Upper Cretaceous succession, locally present in this area, has been vaguely defined as a post-tectonic cover, locally onlapping uplifted Paleozoic blocks. New seismic data, because of its reliable imaging of the shallowest substratum, confirmed that at least some of these deeply-rooted faults were active as a reverse faults in latest Cretaceous – earliest Paleogene. Consequently, it can be unequivocally proved that large offshore blocks of Silurian and older rocks presently located directly beneath the Cenozoic veneer must have been at least partly covered by the Upper Cretaceous succession; then, they were uplifted during the widespread inversion that affected most of Europe. Ensuing regional erosion might have at least partly provided sediments that formed Upper Cretaceous progradational wedges recently imaged within the onshore Baltic Basin by high-end PolandSPAN regional seismic data. New seismic data imaged also Paleogene and younger post-inversion cover. All these results prove that Late Cretaceous tectonics substantially affected large areas located much farther towards the East than previously assumed.</p><p>This study was funded by the Polish National Science Centre (NCN) grant no UMO-2017/27/B/ST10/02316.</p>


Sign in / Sign up

Export Citation Format

Share Document