Double plane wave reverse time migration in the time domain

Author(s):  
Zeyu Zhao* ◽  
Paul L. Stoffa ◽  
Mrinal K. Sen
Geophysics ◽  
2016 ◽  
Vol 81 (1) ◽  
pp. S1-S9 ◽  
Author(s):  
Jiangtao Hu ◽  
Huazhong Wang ◽  
Xiongwen Wang

Angle-domain common imaging gathers (ADCIGs) are important input data for migration velocity analysis and amplitude variation with angle analysis. Compared with Kirchhoff migration and one-way wave equation migration, reverse time migration (RTM) is the most accurate imaging method in complex areas, such as the subsalt area. We have developed a method to generate ADCIGs from RTM using analytic wavefield propagation and decomposition. To estimate the wave-propagation direction and angle by spatial Fourier transform during the time domain wave extrapolation, we have developed an analytic wavefield extrapolation method. Then, we decomposed the extrapolated source and receiver wavefields into their local angle components (i.e., local plane-wave components) and applied the angle-domain imaging condition to form ADCIGs. Because the angle-domain imaging condition is a convolution imaging condition about the source and receiver propagation angles, it is costly. To increase the efficiency of the angle-domain imaging condition, we have developed a local plane-wave decomposition method using matching pursuit. Numerical examples of synthetic and real data found that this method could generate high-quality ADCIGs. And these examples also found that the computational cost of this approach was related to the complexity of the source and receiver wavefields.


Geophysics ◽  
2018 ◽  
Vol 83 (6) ◽  
pp. S549-S556 ◽  
Author(s):  
Xiongwen Wang ◽  
Xu Ji ◽  
Hongwei Liu ◽  
Yi Luo

Plane-wave reverse time migration (RTM) could potentially provide quick subsurface images by migrating fewer plane-wave gathers than shot gathers. However, the time delay between the first and the last excitation sources in the plane-wave source largely increases the computation cost and decreases the practical value of this method. Although the time delay problem is easily overcome by periodical phase shifting in the frequency domain for one-way wave-equation migration, it remains a challenge for time-domain RTM. We have developed a novel method, referred as to fast plane-wave RTM (FP-RTM), to eliminate unnecessary computation burden and significantly reduce the computational cost. In the proposed FP-RTM, we assume that the Green’s function has finite-length support; thus, the plane-wave source function and its responding data can be wrapped periodically in the time domain. The wrapping length is the assumed total duration length of Green’s function. We also determine that only two period plane-wave source and data after the wrapping process are required for generating the outcome with adequate accuracy. Although the computation time for one plane-wave gather is twice as long as a normal shot gather migration, a large amount of computation cost is saved because the total number of plane-wave gathers to be migrated is usually much less than the total number of shot gathers. Our FP-RTM can be used to rapidly generate RTM images and plane-wave domain common-image gathers for velocity model building. The synthetic and field data examples are evaluated to validate the efficiency and accuracy of our method.


Geophysics ◽  
2020 ◽  
pp. 1-79
Author(s):  
Ali Fathalian ◽  
Daniel O. Trad ◽  
Kristopher A. Innanen

Anisotropy and absorption are critical to the modeling and analysis of seismic amplitude,phase, and traveltime data. To neglect any of these phenomena, which are often bothoperating simultaneously, degrades the resolution and interpretability of migrated images.However, a full accounting of anisotropy and anelasticity is computationally complex andexpensive. One strategy for accommodating these aspects of wave propagation, while keepingcost and complexity under control, is to do so within an acoustic approximation. Weset up a procedure for solving the time-domain viscoacoustic wave equation for tilted transverselyisotropic (TTI) media, based on a standard linear solid model and, from this, developa viscoacoustic reverse time migration (Q-RTM) algorithm. In this approach, amplitudecompensation occurs within the migration process through a manipulation of attenuationand phase dispersion terms in the time domain differential equations. Specifically, theback-propagation operator is constructed by reversing the sign only of the amplitude lossoperators, but not the dispersion-related operators, a step made possible by reformulatingthe absorptive TTI equations such that the loss and dispersion operators appear separately.The scheme is tested on synthetic examples to examine the capacity of viscoacoustic RTM to correct for attenuation, and the overall stability of the procedure.


Author(s):  
Zeyu Zhao* ◽  
Mrinal K. Sen ◽  
Paul L. Stoffa ◽  
Hejun Zhu

2012 ◽  
Author(s):  
Wookeen Chung ◽  
Jungkyun Shin ◽  
Changsoo Shin ◽  
Sungryul Shin

Sign in / Sign up

Export Citation Format

Share Document