isotropic media
Recently Published Documents


TOTAL DOCUMENTS

1006
(FIVE YEARS 142)

H-INDEX

50
(FIVE YEARS 4)

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7837
Author(s):  
Mikołaj Bilski ◽  
Krzysztof W. Wojciechowski ◽  
Tomasz Stręk ◽  
Przemysław Kędziora ◽  
James N. Grima-Cornish ◽  
...  

The re-entrant honeycomb microstructure is one of the most famous, typical examples of an auxetic structure. The re-entrant geometries also include other members as, among others, the star re-entrant geometries with various symmetries. In this paper, we focus on one of them, having a 6-fold symmetry axis. The investigated systems consist of binary hard discs (two-dimensional particles with two slightly different sizes, interacting through infinitely repulsive pairwise potential), from which different structures, based on the mentioned geometry, were formed. To study the elastic properties of the systems, computer simulations using the Monte Carlo method in isobaric-isothermal ensemble with varying shape of the periodic box were performed. The results show that all the considered systems are isotropic and not auxetic—their Poisson’s ratio is positive in each case. Moreover, Poisson’s ratios of the majority of examined structures tend to +1 with increasing pressure, which is the upper limit for two-dimensional isotropic media, thus they can be recognized as the ideal non-auxetics in appropriate thermodynamic conditions. The results obtained contradict the common belief that the unique properties of metamaterials result solely from their microstructure and indicate that the material itself can be crucial.


2021 ◽  
Vol 11 (22) ◽  
pp. 10845
Author(s):  
Lixia Sun ◽  
Yun Wang ◽  
Wei Li ◽  
Yongxiang Wei

Under the assumptions of linear elasticity and small deformation in traditional elastodynamics, the anisotropy of the medium has a significant effect on rotations observed during earthquakes. Based on the basic theory of the first-order velocity-stress elastic wave equation, this paper simulates the seismic wave propagation of the translational and rotational motions in two-dimensional isotropic and VTI (transverse isotropic media with a vertical axis of symmetry) media under different source mechanisms with the staggered-grid finite-difference method with respect to nine different seismological models. Through comparing the similarities and differences between the translational and rotational components of the wave fields, this paper focuses on the influence of anisotropic parameters on the amplitude and phase characteristics of the rotations. We verify that the energy of S waves in the rotational components is significantly stronger than that of P waves, and the response of rotations to the anisotropic parameters is more sensitive. There is more abundant information in the high-frequency band of the rotational components. With the increase of Thomsen anisotropic parameters ε and δ, the energy of the rotations increases gradually, which means that the rotational component observation may be helpful to the study of anisotropic parameters.


2021 ◽  
Author(s):  
Elisabeth Brusseau ◽  
Lorena Petrusca ◽  
Elie Bretin ◽  
Pierre Millien ◽  
Laurent Seppecher

Geophysics ◽  
2021 ◽  
pp. 1-41
Author(s):  
Ali Raeisdana ◽  
M. Javad Khoshnavaz ◽  
Hamid Reza Siahkoohi

Calculating an accurate seismic velocity model serves an important role in many seismic imaging techniques. The process of velocity model building is often time-consuming, specifically for anisotropic areas, where more than a single parameter is involved in the process. In the past few years, more time-efficient approaches have been considered to estimate seismic velocity as well as anellipticity parameters or heterogeneity factor using local event slopes. Nevertheless, some of these techniques are not practical due to curvature-dependency, or due to the lack of near-offset data. To address such limitations, we use a curvature-independent approach for normal-moveout correction as well as parameter estimation in vertical transverse isotropic media, which is based on local estimation of vertical traveltime using a shifted hyperbola approximation in the absence of near-offset data. The performance of the proposed approach is tested on synthetic and field common-midpoint gathers. It is also assessed in different signal-to-noise ratios and different missing-near-offset situations. Our findings are consistent with the results achieved by the previous methods that were not developed for sparse data.


Geophysics ◽  
2021 ◽  
pp. 1-68
Author(s):  
Mohammad Mahdi Abedi ◽  
David Pardo ◽  
Alexey Stovas

Each seismic body wave, including quasi compressional, shear, and converted wave modes, carries useful subsurface information. For processing, imaging, amplitude analysis, and forward modeling of each wave mode, we need approximate equations of traveltime, slope (ray-parameter), and curvature as a function of offset. Considering the large offset coverage of modern seismic acquisitions, we propose new approximations designed to be accurate at zero and infinitely large offsets over layered transversely isotropic media with vertical symmetry axis (VTI). The proposed approximation for traveltime is a modified version of the extended generalized moveout approximation that comprises six parameters. The proposed direct approximations for ray-parameter and curvature use new, algebraically simple, equations with three parameters. We define these parameters for each wave mode without ray tracing so that we have similar approximate equations for all wave modes that only change based on the parameter definitions. However, our approximations are unable to reproduce S-wave triplications that may occur in some strongly anisotropic models. Using our direct approximation of traveltime derivatives, we also obtain a new expression for the relative geometrical spreading. We demonstrate the high accuracy of our approximations using numerical tests on a set of randomly generated multilayer models. Using synthetic data, we present simple applications of our approximations for normal moveout correction and relative geometrical spreading compensation of different wave modes.


Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2071
Author(s):  
Jorge A. Portí ◽  
Alfonso Salinas ◽  
Enrique A. Navarro ◽  
Jesús Rodríguez-Camacho ◽  
Jesús Fornieles ◽  
...  

A reformulation of the Transmission Line Matrix (TLM) method is presented to model non-dispersive anisotropic media. Two TLM-based solutions to solve this problem can already be found in the literature, each one with an interesting feature. One can be considered a more conceptual approach, close to the TLM fundamentals, which identifies each TLM in Maxwell’s equations with a specific line. But this simplicity is achieved at the expense of an increase in the memory storage requirements of a general situation. The second existing solution is a more powerful and general formulation that avoids this increase in memory storage. However, it is based on signal processing techniques and considerably deviates from the original TLM method, which may complicate its dissemination in the scientific community. The reformulation presented in this work exploits the benefits of both methods. On the one hand, it maintains the direct and conceptual approach of the original TLM, which may help to better understand it, allowing for its future use and improvement by other authors. On the other hand, the proposal includes an optimized treatment of the signals stored at the stub lines in order to limit the requirement of memory storage to only one accumulative term per field component, as in the original TLM versions used for isotropic media. The good behavior of the proposed algorithm when applied to anisotropic media is shown by its application to different situations involving diagonal and off-diagonal tensor properties.


Author(s):  
Shihang Feng ◽  
Lei Fu ◽  
Zongcai Feng ◽  
Gerard T. Schuster

Sign in / Sign up

Export Citation Format

Share Document