A hybrid learning-based framework for seismic denoising

2019 ◽  
Vol 38 (7) ◽  
pp. 542-549 ◽  
Author(s):  
Chengbo Li ◽  
Yu Zhang ◽  
Charles C. Mosher

Noise attenuation has been a long-standing problem in seismic data processing. It presents unique challenges on land due to a complex near surface coupled with unavoidable environmental noise sources. In many cases, weak signals are embedded in much stronger noise, which makes conventional methods less effective at extracting those signals. In addition, conventional methods may lack adaptability to various noise types and patterns. Machine learning has shown great promise in solving geophysical problems including seismic data processing and interpretation. Here, we propose a novel method that is applicable to attenuating both incoherent noise, such as environmental noise, and coherent noise, such as ground roll and scattered noise, under a unified learning-based framework. This framework takes advantage of conventional methods to build the initial models and then employs dictionary learning and sparse inversion to invert both signal and noise simultaneously. The proposed method augments conventional methods by leveraging learning to recover residual weak signals from strong noise. We have applied this hybrid learning-based method successfully to some of the most difficult data areas where conventional denoising methods underperformed. Synthetic and real data examples demonstrate the effectiveness of the method for various noise types.

Geophysics ◽  
1998 ◽  
Vol 63 (4) ◽  
pp. 1332-1338 ◽  
Author(s):  
Gregory S. Baker ◽  
Don W. Steeples ◽  
Matt Drake

A 300-m near‐surface seismic reflection profile was collected in southeastern Kansas to locate a fault(s) associated with a recognized stratigraphic offset on either side of a region of unexposed bedrock. A substantial increase in the S/N ratio of the final stacked section was achieved by muting all data arriving in time after the airwave. Methods of applying traditional seismic data processing techniques to near‐surface data (200 ms of data or less) often differ notably from hydrocarbon exploration‐scale processing (3–4 s of data or more). The example of noise cone muting used is contrary to normal exploration‐scale seismic data processing philosophy, which is to include all data containing signal. The noise cone mute applied to the data removed more than one‐third of the total data volume, some of which contains signal. In this case, however, the severe muting resulted in a higher S/N ratio in the final stacked section, even though some signal could be identified within the muted data. This example supports the suggestion that nontraditional techniques sometimes need to be considered when processing near‐surface seismic data.


2002 ◽  
Vol 21 (8) ◽  
pp. 730-735 ◽  
Author(s):  
Panos G. Kelamis ◽  
Kevin E. Erickson ◽  
Dirk J. Verschuur ◽  
A. J. Berkhout

Sign in / Sign up

Export Citation Format

Share Document