static corrections
Recently Published Documents


TOTAL DOCUMENTS

157
(FIVE YEARS 14)

H-INDEX

20
(FIVE YEARS 1)

2021 ◽  
Vol 62 (07) ◽  
pp. 790-797
Author(s):  
V.A. Kochnev

Abstract —The paper presents a new seismogravimetric method for estimating static corrections used in processing of seismic data and in construction of time and depth sections. The method efficiency is demonstrated by comparison of the results of industrial and new experimental processing of data for the western slope of the Nepa–Botuoba anteclise.


2021 ◽  
Vol 40 (6) ◽  
pp. 460-463
Author(s):  
Lionel J. Woog ◽  
Anthony Vassiliou ◽  
Rodney Stromberg

In seismic data processing, static corrections for near-surface velocities are derived from first-break picking. The quality of the static corrections is paramount to developing an accurate shallow velocity model, a model that in turn greatly impacts the subsequent seismic processing steps. Because even small errors in first-break picking can greatly impact the seismic velocity model building, it is necessary to pick high-quality traveltimes. Whereas various artificial intelligence-based methods have been proposed to automate the process for data with medium to high signal-to-noise ratio (S/N), these methods are not applicable to low-S/N data, which still require intensive labor from skilled operators. We successfully replace 160 hours of skilled human work with 10 hours of processing by a single NVIDIA Quadro P6000 graphical processing unit by reducing the number of human picks from the usual 5%–10% to 0.19% of available gathers. High-quality inferred picks are generated by convolutional neural network-based machine learning trained from the human picks.


Solid Earth ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 483-502
Author(s):  
Alireza Malehmir ◽  
Magdalena Markovic ◽  
Paul Marsden ◽  
Alba Gil ◽  
Stefan Buske ◽  
...  

Abstract. Many metallic mineral deposits have sufficient physical property contrasts, particularly density, to be detectable using seismic methods. These deposits are sometimes significant for our society and economic growth and can help to accelerate the energy transition towards decarbonization. However, their exploration at depth requires high-resolution and sensitive methods. Following a series of 2D seismic trials, a sparse, narrow source–receiver azimuth, 3D seismic survey was conducted in the Blötberget mine, in central Sweden, covering an area of approximately 6 km2 for deep-targeting iron oxide deposits and their host rock structures. The survey benefited from a collaborative work by putting together 1266 seismic recorders and a 32 t vibrator, generating 1056 shot points in a fixed geometry setup. Shots were fired at every 10 m where possible, and receivers were placed at every 10–20 m. Notable quality data were acquired despite the area being dominated by swampy places as well as by built-up roads and historical tailings. The data processing had to overcome these challenges for the static corrections and strong surface waves in particular. A tailored for hardrock setting and processing workflow was developed for handling such a dataset, where the use of mixed 2D and 3D refraction static corrections was relevant. The resulting seismic volume is rich in terms of reflectivity, with clear southeast-dipping reflections originating from the iron oxide deposits extending vertically and laterally at least 300 m beyond what was known from available boreholes. As a result, we estimate potential additional resources from the 3D reflection seismic experiment on the order of 10 Mt to be worth drilling for detailed assessments. The mineralization is crosscut by at least two major sets of northwest-dipping reflections interpreted to dominantly be normal faults and to be responsible for much of the lowland in the Blötberget area. Moreover, these post-mineralization faults likely control the current 3D geometry of the deposits. Curved and submerged reflections interpreted from folds or later intrusions are also observed, showing the geological complexity of the study area. The seismic survey also delineates the near-surface expression of a historical tailing as a by-product of refraction static corrections, demonstrating why 3D seismic data are so valuable for both mineral exploration and mine planning applications.


2021 ◽  
Author(s):  
Adam Cygal ◽  
Michał Stefaniuk ◽  
Anna Kret

AbstractThis article presents the results of an integrated interpretation of measurements made using Audio-Magnetotellurics and Seismic Reflection geophysical methods. The obtained results were used to build an integrated geophysical model of shallow subsurface cover consisting of Cenozoic deposits, which then formed the basis for a detailed lithological and tectonic interpretation of deeper Mesozoic sediments. Such shallow covers, consisting mainly of glacial Pleistocene deposits, are typical for central and northern Poland. This investigation concentrated on delineating the accurate geometry of Obrzycko Cenozoic graben structure filled with loose deposits, as it was of great importance to the acquisition, processing and interpretation of seismic data that was to reveal the tectonic structure of the Cretaceous and Jurassic sediments which underly the study area. Previously, some problems with estimation of seismic static corrections over similar grabens filled with more recent, low-velocity deposits were encountered. Therefore, a novel approach to estimating the exact thickness of such shallow cover consisting of low-velocity deposits was applied in the presented investigation. The study shows that some alternative geophysical data sets (such as magnetotellurics) can be used to significantly improve the imaging of geological structure in areas where seismic data are very distorted or too noisy to be used alone


2020 ◽  
Vol 92 (1) ◽  
pp. 408-420
Author(s):  
Qicheng Zeng ◽  
Robert L. Nowack

Abstract Local seismic events recorded by the large-N Incorporated Research Institutions for Seismology Community Wavefield Experiment in Oklahoma are used to estimate Moho reflections near the array. For events within 50 km of the center of the array, normal moveout corrections and receiver stacking are applied to identify the PmP and SmS Moho reflections on the vertical and transverse components. Corrections for the reported focal depths are applied to a uniform event depth. To stack signals from multiple events, further static corrections of the envelopes of the Moho reflected arrivals from the individual event stacks are applied. The multiple-event stacks are then used to estimate the pre-critical PmP and SmS arrivals, and an average Poisson’s ratio of 1.77±0.02 was found for the crust near the array. Using a modified Oklahoma Geological Survey (OGS) velocity model with this Poisson’s ratio, the time-to-depth converted PmP and SmS arrivals resulted in a Moho depth of 41±0.6  km. The modeling of wide-angle Moho reflections for selected events at epicenter-to-station distances of 90–135 km provides additional constraints, and assuming the modified OGS model, a Moho depth of 40±1  km was inferred. The difference between the pre-critical and wide-angle Moho estimates could result from some lateral variability between the array and the wide-angle events. However, both estimates are slightly shallower than the original OGS model Moho depth of 42 km, and this could also result from a somewhat faster lower crust. This study shows that local seismic events, including induced events, can be utilized to estimate properties and structure of the crust, which, in turn, can be used to better understand the tectonics of a given region. The recording of local seismicity on large-N arrays provides increased lateral phase coherence for the better identification of precritical and wide-angle reflected arrivals.


2020 ◽  
Author(s):  
Alireza Malehmir ◽  
Magdalena Markovic ◽  
Paul Marsden ◽  
Alba Gil ◽  
Stefan Buske ◽  
...  

Abstract. Many metallic mineral deposits have sufficient contrasts, particularly density, to be detectable using seismic methods. These deposits are sometimes significant for our society, economic growth and can help to accelerate the energy transition towards decarbonization. However, their exploration at depth requires high-resolution and sensitive methods. Following a series of 2D seismic trials, a sparse, narrow source-receiver azimuth, 3D seismic survey was conducted in the Blötberget mine, in central Sweden, covering an area of approximately 6 km2 for deep targeting iron-oxide deposits and their host rock structures. The survey benefited from a collaborative work by putting together 1266 seismic recorders and a 32t vibrator generating 1056 shot points in a fixed geometry setup. A linear sweep ranging from 10–160 Hz and 20 s long was generated three times per shot point. Shots were fired at every 10 m where possible and receivers placed at every 10–20 m. Notable quality data were acquired although the area is dominated by swampy places as well as by built-up roads and historical tailings. The data processing had to overcome these challenges in particular for the static corrections and strong surface-waves. A tailored for hardrock-setting-processing workflow was developed for handling such a dataset, where the use of mixed 2D and 3D refraction static corrections were relevant. The resulting seismic volume is rich in terms of reflectivity with clear southeast dipping reflections originated from iron-oxide deposits extending vertically and laterally at least 300 m beyond what was known from boreholes. We estimate potential additional resources from the 3D reflection seismic experiment on the order of 10 Mt worth drilling for detailed assessments. The mineralization is crosscut by at least two major sets of northwest dipping reflections interpreted to be dominantly normal faults and responsible for much of the lowland in the Blötberget area. Moreover, these post-mineralization faults likely control the current 3D geometry of the deposits. Curved and submerged reflections interpreted from folds or later intrusions are also observed showing the geological complexity of the study area. The seismic survey also delineates the near-surface expression of a historical tailing as a by-product of refraction static corrections demonstrating why 3D seismic data. The sparse 3D survey illustrates that performing cost-effective reflection surveys for mineral exploration is achievable if they are conducted and planned carefully, systematically and based on earlier experiences.


2020 ◽  
Vol 8 (3) ◽  
pp. T651-T665
Author(s):  
Yalin Li ◽  
Xianhuai Zhu ◽  
Gengxin Peng ◽  
Liansheng Liu ◽  
Wensheng Duan

Seismic imaging in foothills areas is challenging because of the complexity of the near-surface and subsurface structures. Single seismic surveys often are not adequate in a foothill-exploration area, and multiple phases with different acquisition designs within the same block are required over time to get desired sampling in space and azimuths for optimizing noise attenuation, velocity estimation, and migration. This is partly because of economic concerns, and it is partly because technology is progressing over time, creating the need for unified criteria in processing workflows and parameters at different blocks in a study area. Each block is defined as a function of not only location but also the acquisition and processing phase. An innovative idea for complex foothills seismic imaging is presented to solve a matrix of blocks and tasks. For each task, such as near-surface velocity estimation and static corrections, signal processing, prestack time migration, velocity-model building, and prestack depth migration, one or two best service companies are selected to work on all blocks. We have implemented streamlined processing efficiently so that Task-1 to Task-n progressed with good coordination. Application of this innovative approach to a mega-project containing 16 3D surveys covering more than [Formula: see text] in the Kelasu foothills, northwestern China, has demonstrated that this innovative approach is a current best practice in complex foothills imaging. To date, this is the largest foothills imaging project in the world. The case study in Kelasu successfully has delivered near-surface velocity models using first arrivals picked up to 3500 m offset for static corrections and 9000 m offset for prestack depth migration from topography. Most importantly, the present megaproject is a merge of several 3D surveys, with the merge performed in a coordinated, systematic fashion in contrast to most land megaprojects. The benefits of this approach and the strategies used in processing data from the various subsurveys are significant. The main achievement from the case study is that the depth images, after the application of the near-surface velocity model estimated from the megasurveys, are more continuous and geologically plausible, leading to more accurate seismic interpretation.


Geosciences ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 66
Author(s):  
Mateusz Zaręba ◽  
Tomasz Danek ◽  
Jerzy Zając

Obtaining the most accurate and detailed subsurface information from seismic surveys is one of the main challenges for seismic data processing, especially in the context of complex geological conditions (e.g., mountainous areas). The correct calculation of static corrections allows for the reliable processing of seismic data. This, in turn, leads to better geological interpretation. A seismic signal passing through a near-surface zone (NSZ) is adversely affected by the high heterogeneity of this zone. As a result of this, observed travel times often show anisotropy. The application of refractive waves and the time delay solution without taking into account the effects caused by the complex anisotropy of an NSZ does not meet the standards of modern seismic surveys. The construction of the NSZ model in mountain regions with the use of refraction may be extremely difficult, as the vertical layers can be observed very close to the surface. It is not sufficient to apply regular isotropic refractive solutions in such conditions. The presented studies show the results of taking into account the anisotropy of an NSZ in the calculations of static corrections. The presented results show that this step is critical for the detailed processing of three-dimensional (3D) seismic data collected in the difficult region of the Carpathians in Southern Poland.


Author(s):  
A. P. Sysoev ◽  

When performing seismic observations, 2D seismograms of a common shot point are represented as a discrete function of two variables, i.e. time and receiver – source offset. When recording a wave field using single seismic receivers placed small distance apart (UniQ technology), two goals are pursued : maintaining high frequencies of reflected signals by eliminating the effect of microstatics and fulfilling the Kotelnikov sampling theorem when discretizing a continuous field with respect to a spatial variable, thereby eliminating the effect of spatial aliasing of regular interference waves. At the stage of digital processing, this allows to solve the problem of extracting useful signals and suppressing noise more effectively. Taking the idea of a close array of receivers as a whole, it is proposed to optimize the profile observation system by source – receiver spacing combining analog and digital grouping of seismic receivers. In this case, the spatial sampling of the field is determined by the distance between the centers of receiver groups, and the parameters of the analog – digital grouping are calculated from the condition of suppressing spatial aliasing frequencies. Based on the analysis of static corrections obtained during processing of previous seismic studies, a method is proposed for assessing the effect of lateral microstatics variations on the results of analog grouping.


Sign in / Sign up

Export Citation Format

Share Document