scholarly journals Components of Agreement between Categorical Maps at Multiple Resolutions

Author(s):  
R Gil Pontius Jr ◽  
Beth Suedmeyer
Author(s):  
Giulio Caravagna

AbstractCancers progress through the accumulation of somatic mutations which accrue during tumour evolution, allowing some cells to proliferate in an uncontrolled fashion. This growth process is intimately related to latent evolutionary forces moulding the genetic and epigenetic composition of tumour subpopulations. Understanding cancer requires therefore the understanding of these selective pressures. The adoption of widespread next-generation sequencing technologies opens up for the possibility of measuring molecular profiles of cancers at multiple resolutions, across one or multiple patients. In this review we discuss how cancer genome sequencing data from a single tumour can be used to understand these evolutionary forces, overviewing mathematical models and inferential methods adopted in field of Cancer Evolution.


Author(s):  
Jianhua Li ◽  
Lin Liao

Corner-based registration of the industry standard contour and the actual product contour is one of the key steps in industrial computer vision-based measurement. However, existing corner extraction algorithms do not achieve satisfactory results in the extraction of the standard contour and the deformed contour of the actual product. This paper proposes a multi-resolution-based contour corner extraction algorithm for computer vision-based measurement. The algorithm first obtains different corners in multiple resolutions, then sums up the weighted corner values, and finally chooses the corner points with the appropriate corner values as the final contour corners. The experimental results show that the proposed algorithm, based on multi-resolution, outperforms the original algorithm in the aspect of the corner matching situation and helps in subsequent product measurements.


2020 ◽  
Vol 6 (4) ◽  
pp. 473-490
Author(s):  
Rita Nicolau ◽  
◽  
Nadiia Basos ◽  
Filipe Marcelino ◽  
Mário Caetano ◽  
...  

2021 ◽  
Author(s):  
Huan Zhang ◽  
Zhao Zhang ◽  
Haijun Zhang ◽  
Yi Yang ◽  
Shuicheng Yan ◽  
...  

<div>Deep learning based image inpainting methods have improved the performance greatly due to powerful representation ability of deep learning. However, current deep inpainting methods still tend to produce unreasonable structure and blurry texture, implying that image inpainting is still a challenging topic due to the ill-posed property of the task. To address these issues, we propose a novel deep multi-resolution learning-based progressive image inpainting method, termed MR-InpaintNet, which takes the damaged images of different resolutions as input and then fuses the multi-resolution features for repairing the damaged images. The idea is motivated by the fact that images of different resolutions can provide different levels of feature information. Specifically, the low-resolution image provides strong semantic information and the high-resolution image offers detailed texture information. The middle-resolution image can be used to reduce the gap between low-resolution and high-resolution images, which can further refine the inpainting result. To fuse and improve the multi-resolution features, a novel multi-resolution feature learning (MRFL) process is designed, which is consisted of a multi-resolution feature fusion (MRFF) module, an adaptive feature enhancement (AFE) module and a memory enhanced mechanism (MEM) module for information preservation. Then, the refined multi-resolution features contain both rich semantic information and detailed texture information from multiple resolutions. We further handle the refined multiresolution features by the decoder to obtain the recovered image. Extensive experiments on the Paris Street View, Places2 and CelebA-HQ datasets demonstrate that our proposed MRInpaintNet can effectively recover the textures and structures, and performs favorably against state-of-the-art methods.</div>


2004 ◽  
Vol 26 (2-4) ◽  
pp. 285-320 ◽  
Author(s):  
Budhaditya Deb ◽  
Sudeept Bhatnagar ◽  
Badri Nath
Keyword(s):  

2016 ◽  
Vol 8 (1) ◽  
pp. 41 ◽  
Author(s):  
Steve Ampofo ◽  
Isaac Sackey ◽  
Boateng Ampadu

Landcover change is an observed natural change dynamics at both the local and regional levels. However, its scales are exacerbated by human interaction with its natural environment. The study examines these spatio-temporal changes in landcover and the level to which the change is accompanied by fragmentation of the identifiable cover types in the Talensi and Nabdam districts in Northern Ghana. The research uses digital classification of Landsat satellite imagery for 1999 and 2007 to produce the cover types which results in good accuracy levels of 66.39% and 63.03% respectively. Fragmentation analysis of the landscape was computed using FRAGSTATS® software for categorical maps obtained from the classified landcover maps for the two years. All cover types increased marginally. However, Bare areas decreased by as much as 17.17% and that of water decreased from 3% to 1%. The changing landscape involving conversions within and among various cover types is accompanied by fragmentation in all classes but more pronounced in the Bare class. The Bare class type which has more patches corresponds to the class with increased cover size and rather strangely decreases in the mean path size.


2013 ◽  
Vol 114 (6) ◽  
pp. 716-724 ◽  
Author(s):  
Dragoş M. Vasilescu ◽  
Christine Klinge ◽  
Lars Knudsen ◽  
Leilei Yin ◽  
Ge Wang ◽  
...  

Quantitative assessment of the lung microstructure using standard stereological methods such as volume fractions of tissue, alveolar surface area, or number of alveoli, are essential for understanding the state of normal and diseased lung. These measures are traditionally obtained from histological sections of the lung tissue, a process that ultimately destroys the three-dimensional (3-D) anatomy of the tissue. In comparison, a novel X-ray-based imaging method that allows nondestructive sectioning and imaging of fixed lungs at multiple resolutions can overcome this limitation. Scanning of the whole lung at high resolution and subsequent regional sampling at ultrahigh resolution without physically dissecting the organ allows the application of design-based stereology for assessment of the whole lung structure. Here we validate multiple stereological estimates performed on micro–computed tomography (μCT) images by comparing them with those obtained via conventional histology on the same mouse lungs. We explore and discuss the potentials and limitations of the two approaches. Histological examination offers higher resolution and the qualitative differentiation of tissues by staining, but ultimately loses 3-D tissue relationships, whereas μCT allows for the integration of morphometric data with the spatial complexity of lung structure. However, μCT has limited resolution satisfactory for the sterological estimates presented in this study but not for differentiation of tissues. We conclude that introducing stereological methods in μCT studies adds value by providing quantitative information on internal structures while not curtailing more complex approaches to the study of lung architecture in the context of physiological or pathological studies.


Sign in / Sign up

Export Citation Format

Share Document