Multimedia Databases and Data Mining

2021 ◽  
pp. 817-827
Author(s):  
Venkat N. Gudevada ◽  
Yongjian Fu
Author(s):  
Jung Hwan Oh ◽  
Jeong Kyu Lee ◽  
Sae Hwang

Data mining, which is defined as the process of extracting previously unknown knowledge and detecting interesting patterns from a massive set of data, has been an active research area. As a result, several commercial products and research prototypes are available nowadays. However, most of these studies have focused on corporate data — typically in an alpha-numeric database, and relatively less work has been pursued for the mining of multimedia data (Zaïane, Han, & Zhu, 2000). Digital multimedia differs from previous forms of combined media in that the bits representing texts, images, audios, and videos can be treated as data by computer programs (Simoff, Djeraba, & Zaïane, 2002). One facet of these diverse data in terms of underlying models and formats is that they are synchronized and integrated hence, can be treated as integrated data records. The collection of such integral data records constitutes a multimedia data set. The challenge of extracting meaningful patterns from such data sets has lead to research and development in the area of multimedia data mining. This is a challenging field due to the non-structured nature of multimedia data. Such ubiquitous data is required in many applications such as financial, medical, advertising and Command, Control, Communications and Intelligence (C3I) (Thuraisingham, Clifton, Maurer, & Ceruti, 2001). Multimedia databases are widespread and multimedia data sets are extremely large. There are tools for managing and searching within such collections, but the need for tools to extract hidden and useful knowledge embedded within multimedia data is becoming critical for many decision-making applications.


Author(s):  
Li Shen ◽  
Fillia Makedon

Recent technological advances in 3D digitizing, noninvasive scanning, and interactive authoring have resulted in an explosive growth of 3D models in the digital world. There is a critical need to develop new 3D data mining techniques for facilitating the indexing, retrieval, clustering, comparison, and analysis of large collections of 3D models. These approaches will have important impacts in numerous applications including multimedia databases and mining, industrial design, biomedical imaging, bioinformatics, computer vision, and graphics. For example, in similarity search, new shape indexing schemes (e.g. (Funkhouser et al., 2003)) are studied for retrieving similar objects from databases of 3D models. These shape indices are designed to be quick to compute, concise to store, and easy to index, and so they are often relatively compact. In computer vision and medical imaging, more powerful shape descriptors are developed for morphometric pattern discovery (e.g., (Bookstein, 1997; Cootes, Taylor, Cooper, & Graham, 1995; Gerig, Styner, Jones, Weinberger, & Lieberman, 2001; Styner, Gerig, Lieberman, Jones, & Weinberger, 2003)) that aims to detect or localize shape changes between groups of 3D objects. This chapter describes a general shape-based 3D data mining framework for morphometric pattern discovery.


2004 ◽  
Vol 13 (03) ◽  
pp. 739-759 ◽  
Author(s):  
BHAVANI THURAISINGHAM

Several advances have been made on managing multimedia databases as well as on data mining. Recently there is active research on mining multimedia databases. This paper provides an overview of managing multimedia databases and then describes issues on mining multimedia databases. In particular mining text, image, audio and video data are discussed.


2008 ◽  
pp. 1631-1637
Author(s):  
Jung Hwan Oh ◽  
Jeong Kyu Lee ◽  
Sae Hwang

Data mining, which is defined as the process of extracting previously unknown knowledge and detecting interesting patterns from a massive set of data, has been an active research area. As a result, several commercial products and research prototypes are available nowadays. However, most of these studies have focused on corporate data — typically in an alpha-numeric database, and relatively less work has been pursued for the mining of multimedia data (Zaïane, Han, & Zhu, 2000). Digital multimedia differs from previous forms of combined media in that the bits representing texts, images, audios, and videos can be treated as data by computer programs (Simoff, Djeraba, & Zaïane, 2002). One facet of these diverse data in terms of underlying models and formats is that they are synchronized and integrated hence, can be treated as integrated data records. The collection of such integral data records constitutes a multimedia data set. The challenge of extracting meaningful patterns from such data sets has lead to research and development in the area of multimedia data mining. This is a challenging field due to the non-structured nature of multimedia data. Such ubiquitous data is required in many applications such as financial, medical, advertising and Command, Control, Communications and Intelligence (C3I) (Thuraisingham, Clifton, Maurer, & Ceruti, 2001). Multimedia databases are widespread and multimedia data sets are extremely large. There are tools for managing and searching within such collections, but the need for tools to extract hidden and useful knowledge embedded within multimedia data is becoming critical for many decision-making applications.


With computers and communication dominating technology in different fields, the need to look for media-based information processing, MBIP –rather than data-based information processing, DBIP- is increasingly being felt and this is compounded by the explosive developments in cellular communication, which brought computing and interaction on the move. The basis is to explore possibilities of using conventional data-mining approaches with visualization and object orientation so that human interaction is easier. Data Mining involves exploring databases to try and discover data relationships which are not explicitly stored with in the databases. Traditional techniques involve statistical analysis, clustering and pattern matching. Many current efforts are underway to integrate visualization in to this process. Visual data mining is a novel approach to data mining. The aim is to combine traditional data mining algorithms with information visualization techniques to utilize the advantages of both approaches. The utilization of both automatic analysis methods and human perception/understanding promises better and more effective data exploration. Visualization is a key process in visual data mining. Here the focus is on the presentation of all aspect of multimedia objects, their identification, their analysis and relationships.


Author(s):  
JungHwan Oh

Data mining, which is defined as the process of extracting previously unknown knowledge and detecting interesting patterns from a massive set of data, has been an active research area. As a result, several commercial products and research prototypes are available nowadays. However, most of these studies have focused on corporate data — typically in an alpha-numeric database, and relatively less work has been pursued for the mining of multimedia data (Zaïane, Han, & Zhu, 2000). Digital multimedia differs from previous forms of combined media in that the bits representing texts, images, audios, and videos can be treated as data by computer programs (Simoff, Djeraba, & Zaïane, 2002). One facet of these diverse data in terms of underlying models and formats is that they are synchronized and integrated hence, can be treated as integrated data records. The collection of such integral data records constitutes a multimedia data set. The challenge of extracting meaningful patterns from such data sets has lead to research and development in the area of multimedia data mining. This is a challenging field due to the non-structured nature of multimedia data. Such ubiquitous data is required in many applications such as financial, medical, advertising and Command, Control, Communications and Intelligence (C3I) (Thuraisingham, Clifton, Maurer, & Ceruti, 2001). Multimedia databases are widespread and multimedia data sets are extremely large. There are tools for managing and searching within such collections, but the need for tools to extract hidden and useful knowledge embedded within multimedia data is becoming critical for many decision-making applications.


2020 ◽  
Author(s):  
Mohammed J. Zaki ◽  
Wagner Meira, Jr
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document