Symmetry groups, conservation laws and group-invariant solutions of the Marguerre-von Kármán equations

Author(s):  
V. Vassilev
2016 ◽  
Vol 14 (1) ◽  
pp. 1138-1148
Author(s):  
Maryam Khorshidi ◽  
Mehdi Nadjafikhah ◽  
Hossein Jafari ◽  
Maysaa Al Qurashi

AbstractIn this paper, the classical Lie theory is applied to study the Benjamin-Bona-Mahony (BBM) and modified Benjamin-Bona-Mahony equations (MBBM) to obtain their symmetries, invariant solutions, symmetry reductions and differential invariants. By observation of the the adjoint representation of Mentioned symmetry groups on their Lie algebras, we find the primary classification (optimal system) of their group-invariant solutions which provides new exact solutions to BBM and MBBM equations. Finally, conservation laws of the BBM and MBBM equations are presented. Some aspects of their symmetry properties are given too.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Na Lv ◽  
Xuegang Yuan ◽  
Jinzhi Wang

With the aid of symbolic computation, we obtain the symmetry transformations of the (2 + 1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada (CDGKS) equation by Lou’s direct method which is based on Lax pairs. Moreover, we use the classical Lie group method to seek the symmetry groups of both the CDGKS equation and its Lax pair and then reduce them by the obtained symmetries. In particular, we consider the reductions of the Lax pair completely. As a result, three reduced (1 + 1)-dimensional equations with their new Lax pairs are presented and some group-invariant solutions of the equation are given.


Sign in / Sign up

Export Citation Format

Share Document