Properties of the Julia Set

2021 ◽  
pp. 185-190
Author(s):  
Robert L. Devaney
Keyword(s):  
2010 ◽  
Vol 10 (02) ◽  
pp. 291-313 ◽  
Author(s):  
A. MESSAOUDI ◽  
D. SMANIA

In this work, we compute the eigenvalues of the transition operator associated to the Fibonacci stochastic adding machine. In particular, we show that the eigenvalues are connected to the set [Formula: see text] of complex numbers z where (z2, z) belongs to the filled Julia set of a particular endomorphism of ℂ2. We also study some topological properties of the set [Formula: see text].


2000 ◽  
Vol 11 (13) ◽  
pp. 2067-2073 ◽  
Author(s):  
John Argyris ◽  
Theodoros E Karakasidis ◽  
Ioannis Andreadis
Keyword(s):  

2002 ◽  
Vol 132 (3) ◽  
pp. 531-544 ◽  
Author(s):  
ZHENG JIAN-HUA

We investigate uniform perfectness of the Julia set of a transcendental meromorphic function with finitely many poles and prove that the Julia set of such a meromorphic function is not uniformly perfect if it has only bounded components. The Julia set of an entire function is uniformly perfect if and only if the Julia set including infinity is connected and every component of the Fatou set is simply connected. Furthermore if an entire function has a finite deficient value in the sense of Nevanlinna, then it has no multiply connected stable domains. Finally, we give some examples of meromorphic functions with uniformly perfect Julia sets.


2016 ◽  
Vol 37 (6) ◽  
pp. 1997-2016 ◽  
Author(s):  
YINGQING XIAO ◽  
FEI YANG

In this paper, we study the dynamics of the family of rational maps with two parameters $$\begin{eqnarray}f_{a,b}(z)=z^{n}+\frac{a^{2}}{z^{n}-b}+\frac{a^{2}}{b},\end{eqnarray}$$ where $n\geq 2$ and $a,b\in \mathbb{C}^{\ast }$. We give a characterization of the topological properties of the Julia set and the Fatou set of $f_{a,b}$ according to the dynamical behavior of the orbits of the free critical points.


2016 ◽  
Vol 09 (03) ◽  
pp. 1650045 ◽  
Author(s):  
Mianmian Zhang ◽  
Yongping Zhang

Lotka–Volterra population competition model plays an important role in mathematical models. In this paper, Julia set of the competition model is introduced by use of the ideas and methods of Julia set in fractal geometry. Then feedback control is taken on the Julia set of the model. And synchronization of two different Julia sets of the model with different parameters is discussed, which makes one Julia set change to be another. The simulation results show the efficacy of these methods.


Author(s):  
Robert L. Devaney
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document