When a Super-Decomposable Pure-Injective Module over a Serial Ring Exists

Author(s):  
Gena Puninski
Author(s):  
Avanish Kumar Chaturvedi ◽  
Sandeep Kumar

For any two right [Formula: see text]-modules [Formula: see text] and [Formula: see text], [Formula: see text] is said to be a ps-[Formula: see text]-injective module if, any monomorphism [Formula: see text] can be extended to [Formula: see text]. Also, [Formula: see text] is called psq-injective if [Formula: see text] is a ps-[Formula: see text]-injective module. We discuss some properties and characterizations in terms of psq-injective modules.


Author(s):  
David A. Hill

AbstractA module is uniserial if its lattice of submodules is linearly ordered, and a ring R is left serial if R is a direct sum of uniserial left ideals. The following problem is considered. Suppose the injective hull of each simple left R-module is uniserial. When does this imply that the indecomposable injective left R-modules are uniserial? An affirmative answer is known when R is commutative and when R is Artinian. The following result is proved.Let R be a left serial ring and suppose that for each primitive idempotent e, eRe has indecomposable injective left modules uniserial. The following conditions are equivalent. (a) The injective hull of each simple left R-module is uniserial. (b) Every indecomposable injective left R-module is univerial. (c) Every finitely generated left R-module is serial.The rest of the paper is devoted to a study of some non-Artinian serial rings which serve to illustrate this theorem.


1974 ◽  
Vol 17 (1) ◽  
pp. 133-134
Author(s):  
Gerhard O. Michler

In [1] Lambek calls the injective R-module I nice if every torsionfree factor module of the ring of quotients Q of R with respect to lis divisible. If lis nice then g is a dense subring of the bicommutator BicRI of I with respect to the finite topology (see [1, Proposition 2]). We now give an example of an injective R-module over an Artinian ring R which is not nice. Since R is Artinian, Q=BicRI, by Proposition B of [1].Before we give the example, we state the following, which depends on [2] for terminology.


2019 ◽  
Vol 19 (03) ◽  
pp. 2050050 ◽  
Author(s):  
Yanjiong Yang ◽  
Xiaoguang Yan

In this paper, we study the conditions under which a module is a strict Mittag–Leffler module over the class [Formula: see text] of Gorenstein injective modules. To this aim, we introduce the notion of [Formula: see text]-projective modules and prove that over noetherian rings, if a module can be expressed as the direct limit of finitely presented [Formula: see text]-projective modules, then it is a strict Mittag–Leffler module over [Formula: see text]. As applications, we prove that if [Formula: see text] is a two-sided noetherian ring, then [Formula: see text] is a covering class closed under pure submodules if and only if every injective module is strict Mittag–Leffler over [Formula: see text].


2015 ◽  
Vol 14 (05) ◽  
pp. 1550076 ◽  
Author(s):  
A. A. Tuganbaev

Let A be a right strongly prime ring and let M be a right A-module which is not singular. We obtain criteria of the property that M is an injective module or a CS module.


2009 ◽  
Vol 16 (03) ◽  
pp. 397-402 ◽  
Author(s):  
Avanish Kumar Chaturvedi ◽  
B. M. Pandeya ◽  
A. J. Gupta

In this paper, the concept of quasi-pseudo principally injective modules is introduced and a characterization of commutative semi-simple rings is given in terms of quasi-pseudo principally injective modules. An example of pseudo M-p-injective module which is not M-pseudo injective is given.


1990 ◽  
Vol 32 (1) ◽  
pp. 71-78 ◽  
Author(s):  
A. W. Chatters

A module is said to be serial if it has a unique chain of submodules, and a ring is serial if it is a direct sum of serial right ideals and a direct sum of serial left ideals. The serial rings of Krull dimension 0 are the Artinian serial (or generalised uniserial) rings studied by Nakayama and for which there is an extensive theory (see for example [4]). Warfield in [10] extended the theory to the non-Artinian case. In particular he showed that a Noetherian serial ring is a direct sum of Artinian serial rings and prime Noetherian serial rings, and he gave a structure theorem in the prime Noetherian case. A Noetherian non-Artinian serial ring has Krull dimension 1. Serial rings of arbitrary Krull dimension have been studied by Wright ([9], [12], [13], [14]) with special results being proved when the Krull dimension is 1 or 2.


Sign in / Sign up

Export Citation Format

Share Document