Optimal control of shape memory alloys with solid-solid phase transitions

Author(s):  
M Brokate ◽  
J Sprekels
2022 ◽  
Vol 119 (1) ◽  
pp. e2118161119
Author(s):  
Xudong Liang ◽  
Hongbo Fu ◽  
Alfred J. Crosby

Solid–solid phase transformations can affect energy transduction and change material properties (e.g., superelasticity in shape memory alloys and soft elasticity in liquid crystal elastomers). Traditionally, phase-transforming materials are based on atomic- or molecular-level thermodynamic and kinetic mechanisms. Here, we develop elasto-magnetic metamaterials that display phase transformation behaviors due to nonlinear interactions between internal elastic structures and embedded, macroscale magnetic domains. These phase transitions, similar to those in shape memory alloys and liquid crystal elastomers, have beneficial changes in strain state and mechanical properties that can drive actuations and manage overall energy transduction. The constitutive response of the elasto-magnetic metamaterial changes as the phase transitions occur, resulting in a nonmonotonic stress–strain relation that can be harnessed to enhance or mitigate energy storage and release under high–strain-rate events, such as impulsive recoil and impact. Using a Landau free energy–based predictive model, we develop a quantitative phase map that relates the geometry and magnetic interactions to the phase transformation. Our work demonstrates how controllable phase transitions in metamaterials offer performance capabilities in energy management and programmable material properties for high-rate applications.


2020 ◽  
Vol 41 (12) ◽  
pp. 1421-1471
Author(s):  
Pierluigi Colli ◽  
M. Hassan Farshbaf-Shaker ◽  
Ken Shirakawa ◽  
Noriaki Yamazaki

1999 ◽  
Vol 196-197 ◽  
pp. 837-839 ◽  
Author(s):  
A. Vasil'ev ◽  
A. Bozhko ◽  
V. Khovailo ◽  
I. Dikshtein ◽  
V. Shavrov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document